Math, asked by aarav69jain, 1 month ago

the acute angels of a right triangle are in the ratio 1:2. find the angels of a triangle​

Answers

Answered by ⱮøøɳƇⲅυѕɦεⲅ
6

 \huge  \mapsto \:  \: \huge  \underbrace {\textrm{{{\color{blue}{Given}}}}}

Acute angels of a right triangle are in the ratio 1:2.

 \:

We know that , in right triangle one angle is always 90°.

________________________

\huge  \mapsto \:  \: \huge \underbrace{\textrm{{{\color{blue}{To  \: Find}}}}}

We have to find the angles of a triangle.

_________________________

 \huge\begin{gathered} {\underline{\boxed{ \rm {\red{Using \:  \:  Theorem}}}}}\end{gathered}

\large  \star   \underline {\sf {{{\color{orange}{Angle \:  \:  sum  \:  \: property  \:  \: of \:  \:  a \:  \:  triangle...}}}}} \star

The sum of the angles of a triangle is always 180°.

\bf \Large \hookrightarrow \: \angle \: 1 \:  +  \:  \angle \: 2 \:  +  \:  \angle \: 3 \:  =  \: 180 \degree

Let the angles of a triangle be x.

\bf \Large \hookrightarrow \: \angle \: 1 \:  = 1x \\  \\ \bf \Large \hookrightarrow \: \angle \: 2 \:  =  \: 2x \\  \\ \bf \Large \hookrightarrow \: \angle \: 3 \:  =  \: 90 \degree

\huge  \mapsto \:  \: \huge \underbrace{\textrm{{{\color{blue}{Solution}}}}}

\bf \Large \rightarrow \: \angle \: 1 \:  +  \:  \angle \: 2 \:  +  \:  \angle \: 3 \:  =  \: 180 \degree

\bf \Large \rightarrow \: 1x \:  +  \:  2x  +  \:  90 \degree\:  =  \: 180 \degree

\bf \Large \rightarrow \: 3x \:   +  \:  90 \degree\:  =  \: 180 \degree

\bf \Large \rightarrow \: 3x \:     \:  \:  =  \: 180 \degree \:  -  \: 90 \degree

\bf \Large \rightarrow \: 3x \:     \:  \:  =  \:   \: 90 \degree

\bf \Large \rightarrow \: x \:     \:  \:  =  \:   \cancel\frac{90}{3}  \:  =  \: 30 \degree \\

\bf \Large \rightarrow \: x \:     \:  \:  =   \: 30 \degree

\large  \dag   \:  \:  \underline {\bf {{{\color{indigo}{Substuting  \:  \: the  \:  \: values...}}}}}  \:  \: \dag

\bf \Large \implies \: \angle \: 1 \:  =  \: 1x \\  \\ \bf \Large \implies \: 1x \:  =  \: 1 \:  \times  \: 30 \degree \\  \\ \bf \Large \implies \:  \angle \: 1 \:  =  \: 30 \degree

\bf \Large \implies \: \angle \: 2 \:  =  \: 2x \\  \\ \bf \Large \implies \: 2x \:  =  \: 2 \:  \times  \: 30 \degree \\  \\ \bf \Large \implies \:  \angle \: 2 \:  =  \: 60 \degree

\bf \Large \implies \: \angle \: 3 \:  =  \: 90 \degree

\huge  \mapsto \:  \: \huge \underbrace{\textrm{{{\color{green}{Verification}}}}}

\bf \Large \rightarrow \: \angle \: 1 \:  +  \:  \angle \: 2 \:  +  \:  \angle \: 3 \:  =  \: 180 \degree

\bf \Large \rightarrow \: 30 \degree \:  +  \: 60 \degree \:  +  \: 90 \degree \:  =  \: 180 \degree

\bf \Large \rightarrow \: 90 \degree\:  +  \: 90 \degree \:  =  \: 180 \degree

\bf \Large \rightarrow \: 180 \degree  \:  =  \: 180 \degree

 \:  \: \huge  \underbrace{\textrm{{{\color{green}{LHS = RHS}}}}}

More Information : -

  • A triangle cannot have more than one right angle.

 \:

  • The sum of the length of any two sides of a triangle is greater than the length of the third side.

 \:

  • An exterior angle of a triangle is equal to the sum of the two opposite interior angles.
Answered by Anonymous
13

Answer

  • Angles of the right angled triangle are 30°, 60° and 90°.

Given

  • The acute angels of a right angled triangle are in the ratio 1 : 2.

To Do

  • To find all the angles of the triangle.

Step By Step Explanation

Assumption :

Let us consider the two acute angles of the right angled triangle be x and 2x and the third angle will be 90° [ right angled triangle ].

By Angle Sum Property :

Angle sum property of triangle states that the sum of all the angles of a triangle = 180°.

Equation :

According to the given equation the equation will be

 \bigstar \:  \:  {\underline{ \boxed{ \bold{ \red{x + 2x + 90 = 180}}}}}

Solution of the equation :

Let us solve the above equation to find the angels.

 \longmapsto \sf \: x + 2x + 90 = 180 \\  \\ \longmapsto \sf  3x + 90 = 180 \\  \\ \longmapsto \sf  3x = 180 - 90 \\  \\ \longmapsto \sf  3x = 90 \\  \\ \longmapsto \sf  x =  \cancel \cfrac{90}{3}  \\  \\  \longmapsto {\underline{ \boxed{ \bold{ \green{x = 30}}}}}\:  \:  \bigstar

Therefore, the all the angles of triangle are x = 30°, 2x = 60° and 90°.

__________________________

Similar questions