Math, asked by HiHelloByee, 3 months ago

the adjacent angle of a parallelogram are (2 X + 12) and ( 3 x - 62 ) find the angles of parallelogram​

Answers

Answered by thebrainlykapil
177

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • The adjacent angle of a parallelogram are (2x + 12) and ( 3 x - 62 ). find the angles of pparallelogram

 \\  \\  \\

\large\underline{ \underline{ \sf \maltese{ \: Given:- }}}

  • First Adjacent Angle = \blue{\fbox\orange{( \: 2x \:  +  \: 12 \: )}}
  • Second Adjacent Angle = \blue{\fbox\orange{( \: 3x \:  - \: 62 \: )}}

 \\  \\  \\  \\

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

Adjacent Angles of a Parallelogram are Supplementary.

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\red{\:  ( \: 2x \:  + 12 \: ) \:  +  \: ( \: 3x \:  -  \: 62 \: ) \:  =  \: 180 }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{  ( \: 2x \:  + 12 \: ) \:  +  \: ( \: 3x \:  -  \: 62 \: ) \:  =  \: 180}} \\   \\

\qquad \quad {:} \longrightarrow \sf{\sf{  \: 2x  \:  +  \: 3x \:  +  \: 12 \:  -  \: 62 \:  =  \: 180}} \\   \\

\qquad \quad {:} \longrightarrow \sf{\sf{  \:5x\:   -  \: 50 \:  =  \: 180}} \\   \\

\qquad \quad {:} \longrightarrow \sf{\sf{  \:5x\:  =  \: 180 \:  +  \: 50}} \\   \\

\qquad \quad {:} \longrightarrow \sf{\sf{  \:5x\:  =  \: 230}} \\   \\

\qquad \quad {:} \longrightarrow \sf{\sf{  \:x\:  =  \:  \cancel\frac{230}{5}  }} \\   \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{x  \: = \: 46  }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

Thus, The Adjacent Angles are :-

  • (2x + 12) = 2 × 46 + 12 = \green{\fbox\pink{104°}}
  • (3x - 62) = 3 × 46 - 62 = \green{\fbox\pink{76°}}

━━━━━━━━━━━━━━━━━━━━━━━━━

Since, Opposite angles are equal :-

\bf \therefore \; 1st \;angle = 104°

\bf \therefore \; 2nd \;angle = 76°

\bf \therefore \; 3st \;angle = 104°

\bf \therefore \; 4nd \;angle = 76°

━━━━━━━━━━━━━━━━━━━━━━━━━

More for Knowledge :-

  • The opposite side of a parallelogram are parallel and equal.
  • In a parallelogram, opposite angles are also equal.
  • The diagonals of a parallelogram bisect each other
  • Adjacent Angles in a Parallelogram are Supplementary.

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
35

Step-by-step explanation:

━━━━━━━━━━━━━━━━━━━━━━━━━

More for Knowledge :-

The opposite side of a parallelogram are parallel and equal.

In a parallelogram, opposite angles are also equal.

The diagonals of a parallelogram bisect each other

Adjacent Angles in a Parallelogram are Supplementary.

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions