The adjacent angles of a parallelogram are (3x-4) and (2x-1). Find the measures of each angle of the parallelogram. *
107 , 73 , 107, 73
111, 69 , 111 , 69
100 , 80 , 100 , 80
90 , 90 , 90 , 90
Answers
Answer:
Adjacent Angles of parallelogram are (3x-4), (2x-1).
Measures of each angles in parallelogram...?
In parallelogram, Sum of adjacent angles is equal to 180°. And opposite angles are equal in parallelogram. Sum of all angles = 360°.
In parallelogram opposite angles are equal. The angles are 107° , 73° , 107° , 73°
107° , 73° , 107° , 73° is your answer.
Answer:
Given...★Given...
Adjacent Angles of parallelogram are (3x-4), (2x-1).
{ \large{ \pmb{ \sf{★ To \: Find... }}}}★ToFind...★ToFind...
Measures of each angles in parallelogram...?
{ \large{ \pmb{ \sf{★Used \: Concept... }}}}★UsedConcept...★UsedConcept...
In parallelogram, Sum of adjacent angles is equal to 180°. And opposite angles are equal in parallelogram. Sum of all angles = 360°.
{ \large{ \pmb{ \sf{★Solution... }}}}★Solution...★Solution...
{ \implies{ \sf{3x - 4 + 2x - 1 = 180}}}⟹3x−4+2x−1=180
\: { \implies{ \sf{5x - 5 = 180}}}⟹5x−5=180
\: { \implies{ \sf{5x = 180 + 5}}}⟹5x=180+5
\: { \implies{ \sf{5x = 185}}}⟹5x=185
\: { \implies{ \sf{x = 37°}}}⟹x=37°
{ \large{ \pmb{ \sf{★Finding \: Angles... }}}}★FindingAngles...★FindingAngles...
{ \to{ \sf{3x - 4 = 3(37) - 4 = 111 - 4 = 107°}}}→3x−4=3(37)−4=111−4=107°
{ \to{ \sf{2x - 1 = 2(37) - 1 = 74 - 1 = 73°}}}→2x−1=2(37)−1=74−1=73°
In parallelogram opposite angles are equal. The angles are 107° , 73° , 107° , 73°
{ \large{ \pmb{ \sf{★Final \: Answer... }}}}★FinalAnswer...★FinalAnswer...
107° , 73° , 107° , 73° is your answer
Step-by-step explanation:
hope it's helpful