Math, asked by katariyakusum7, 3 months ago

The adjacent angles of a parallelogram are (3x-4) and (2x-1). Find the measures of each angle of the parallelogram. *

107 , 73 , 107, 73
111, 69 , 111 , 69
100 , 80 , 100 , 80
90 , 90 , 90 , 90​

Answers

Answered by Anonymous
50

Answer:

{ \large { \pmb{ \sf{★Given... }}}}

Adjacent Angles of parallelogram are (3x-4), (2x-1).

{ \large{ \pmb{ \sf{★ To  \:  Find... }}}}

Measures of each angles in parallelogram...?

{ \large{ \pmb{ \sf{★Used  \: Concept... }}}}

In parallelogram, Sum of adjacent angles is equal to 180°. And opposite angles are equal in parallelogram. Sum of all angles = 360°.

{ \large{ \pmb{ \sf{★Solution... }}}}

{ \implies{ \sf{3x - 4 + 2x - 1 = 180}}}

 \: { \implies{ \sf{5x - 5 = 180}}}

 \: { \implies{ \sf{5x = 180 + 5}}}

 \: { \implies{ \sf{5x = 185}}}

 \: { \implies{ \sf{x = 37°}}}

{ \large{ \pmb{ \sf{★Finding  \: Angles... }}}}

{ \to{ \sf{3x - 4 = 3(37) - 4 = 111 - 4 = 107°}}}

{ \to{ \sf{2x - 1 = 2(37) - 1 = 74 - 1 = 73°}}}

In parallelogram opposite angles are equal. The angles are 107° , 73° , 107° , 73°

{ \large{ \pmb{ \sf{★Final  \: Answer... }}}}

107° , 73° , 107° , 73° is your answer.

Answered by spchudasama84
0

Answer:

Given...★Given...

Adjacent Angles of parallelogram are (3x-4), (2x-1).

{ \large{ \pmb{ \sf{★ To \: Find... }}}}★ToFind...★ToFind...

Measures of each angles in parallelogram...?

{ \large{ \pmb{ \sf{★Used \: Concept... }}}}★UsedConcept...★UsedConcept...

In parallelogram, Sum of adjacent angles is equal to 180°. And opposite angles are equal in parallelogram. Sum of all angles = 360°.

{ \large{ \pmb{ \sf{★Solution... }}}}★Solution...★Solution...

{ \implies{ \sf{3x - 4 + 2x - 1 = 180}}}⟹3x−4+2x−1=180

\: { \implies{ \sf{5x - 5 = 180}}}⟹5x−5=180

\: { \implies{ \sf{5x = 180 + 5}}}⟹5x=180+5

\: { \implies{ \sf{5x = 185}}}⟹5x=185

\: { \implies{ \sf{x = 37°}}}⟹x=37°

{ \large{ \pmb{ \sf{★Finding \: Angles... }}}}★FindingAngles...★FindingAngles...

{ \to{ \sf{3x - 4 = 3(37) - 4 = 111 - 4 = 107°}}}→3x−4=3(37)−4=111−4=107°

{ \to{ \sf{2x - 1 = 2(37) - 1 = 74 - 1 = 73°}}}→2x−1=2(37)−1=74−1=73°

In parallelogram opposite angles are equal. The angles are 107° , 73° , 107° , 73°

{ \large{ \pmb{ \sf{★Final \: Answer... }}}}★FinalAnswer...★FinalAnswer...

107° , 73° , 107° , 73° is your answer

Step-by-step explanation:

hope it's helpful

Similar questions