Math, asked by harkamal625, 6 months ago

The adjacent angles of a parallelogram measure (4x – 10)˚ and ( x+15)˚ .Find the value of x.​

Answers

Answered by kingqueen3
1

Answer:

Solution:

Let ABCD is a parallelogram.

<A = 3x+10, <B = x+20

<A+<B = 180°

___________________

Sum of Adjecent angles

are supplementary in a parallelogram.

_____________________

3x+10+x+20 = 180°

=> 4x = 180-30

=> 4x = 150

=> x = 150/4

=> x = 37.5°

Now ,

<A = <C = 3x+10

= 3×37.5+10

= 122.5°

And

<B = <D = x+20

= 37.5 + 20

= 57.5°

____________________

Opposite angles are equal

in a parallelogram

___________________

Answered by CɛƖɛxtríα
40

The value of x is 35.

Step-by-step explanation:

{\underline{\underline{\bf{Given:}}}}

  • That, the adjacent angles of a parallelogram measures (4x – 10)° and (x + 15)°

{\underline{\underline{\bf{Need\:to\: find:}}}}

  • The value of 'x'.

{\underline{\underline{\bf{Concept:}}}}

  • The adjacent angles of a parallelogram are supplementary, i.e, the sum of the two consecutive angles will be 180°.

{\underline{\underline{\bf{Solution:}}}}

As we know, the sum of the two angles is 180°, we can form an equation:

\leadsto{\boxed{\sf{\purple{\angle A+\angle B=180°}}}}

Now, by inserting the measures and solving the equation,

\:\:\:\:\:\:\::\implies{\sf{(4x-10)+(x+15)=180}}

\:

\:

Grouping the like terms-

\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{4x+x-10+15=180}}

\:

\:

Adding/subtracting the like terms-

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{5x+5=180}}

\:

\:

Transposing LHS (5) to RHS (Subtraction)-

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{5x=180-5}}

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{5x=175}}

\:

\:

Again transposing LHS (5) to RHS (Division)-

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{x=\dfrac{\cancel{175}}{\cancel{5}}}}

\:

\:

Cancelling 175 as it is a multiple of 5-

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\boxed{\frak{\red{35}=x}}}

{\underline{\underline{\bf{Verification:}}}}

To verify, substitute 35 in places of x in the equation.

\implies{\sf{\angle A+\angle B=180\degree}}

\implies{\sf{(4x-10)\degree+(x+15)\degree=180\degree}}

\implies{\sf{(4\times 35-10)\degree+(35+15)\degree=180\degree}}

\implies{\sf{(140-10)\degree+50\degree=180\degree}}

\implies{\sf{130\degree+50\degree=180\degree}}

\implies{\sf{180\degree=180\degree}}

\implies{\sf{L.H.S.=R.H.S}}

  • Therefore, the value of x is 35.

___________________________________________

Attachments:
Similar questions