Math, asked by tanvireddy7, 1 month ago

The adjacent figure HOPE is a parallelogram. Find the angle measures x,y,z. State the properties you use to find them.
Please answer this question it's urgent​

Attachments:

Answers

Answered by Yuseong
42

Step-by-step explanation:

As per the provided information in the given question, we have :

  • HOPE is a || gm.
  • Measure of EHP is 40°.
  • Exterior angle of parallelogram is 70°.

Let us say that HOP is ∠1 and EPH is ∠2.

Here, the exterior angle of the parallelogram and 1 is forming a linear pair. So,

  \longrightarrow \sf{\quad { \angle 1 + Exterior \; \angle = 180^\circ}} \\

  • Reason : Linear Pair

Substitute the value of the measure of the exterior angle.

  \longrightarrow \sf{\quad { \angle 1 + 70^\circ = 180^\circ}} \\

Transposing 70° from LHS to RHS.

  \longrightarrow \sf{\quad { \angle 1 = 180^\circ - 70^\circ}} \\

Performing subtraction.

  \longrightarrow \sf{\quad { \angle 1 = 110^\circ}} \\

Now, we got the value of ∠1 that is 110°. Now,

  \longrightarrow \sf{\quad {x = \angle 1 }} \\

  • Reason : Opposite angles of a parallelogram are equal.

  \longrightarrow \quad\underline{\boxed { \textbf{\textsf{x = 110}}^\circ }} \\

Now, let's find the value of z. Here,

  \longrightarrow \sf{\quad { \angle 2 = z}} \\

  • Reason : Alternate interior angles are equal.

So, we need to calculate the value of 2 first.

In EHP :

  \longrightarrow \sf{\quad { 40^\circ + x + \angle 2 = 180^\circ}} \\

  • Reason : Sum of all the interior angles of a triangle is 180°.

Substitute the value of x.

  \longrightarrow \sf{\quad { 40^\circ + 110^\circ + \angle 2 = 180^\circ}} \\

Performing addition.

  \longrightarrow \sf{\quad { 150^\circ + \angle 2 = 180^\circ}} \\

Transposing the terms.

  \longrightarrow \sf{\quad { \angle 2 = 180^\circ - 150^\circ}} \\

Performing subtraction.

  \longrightarrow \sf{\quad { \angle 2 = 30^\circ}} \\

Now, as

  \longrightarrow \sf{\quad {z = \angle 2 }} \\

Substitute the value of angle 2.

  \longrightarrow \quad\underline{\boxed { \textbf{\textsf{z = 30}}^\circ }} \\

Now, finding the value of y :

  \longrightarrow \quad\underline{\boxed { \textbf{\textsf{y = 40}}^\circ }} \\

  • Reason : Alternate interior angles are equal.

 \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad} \\

Therefore,

⠀⠀⠀⠀⠀★ x = 110°

⠀⠀⠀⠀⠀★ y = 40°

⠀⠀⠀⠀⠀★ z = 30°

Attachments:
Similar questions