the adjacent figure shows the diagram of a picture frame having outer dimension 14 cm ×16 cm and inner dimension and 10cm×12 cm if the width of each section is same find area of each section of the frame
Answers
Answer:
Let the outer quadrilateral in the frame be ABCD
Let the inner quadrilateral be PQRS
Let the width marked be as in the figure,equal
PL=PK=QM=QN=RG=RH=SI=JS
BC=28cm, QM=RH (equal width)
QR=20cm
QM+QR+RH=BC
QM+20+QM=28
2 QM=28-20
QM=4 CM
In the figure,
Area of trapezium QBCR=Area of trapezium APSD
=\frac{1}{2}\times\left(AD+PS\right)\times PK=
2
1
×(AD+PS)×PK= =\frac{1}{2}\left(28+20\right)\times4=
2
1
(28+20)×4
=48\times248×2
=96\ cm^296 cm
2
Area of trapezium SRCD =Area of trapezium ABQP
\frac{1}{2}\times\left(CD+RS\right)\times RH=\frac{1}{2}\left(24+16\right)\times4
2
1
×(CD+RS)×RH=
2
1
(24+16)×4
=\frac{1}{2}\times32\times4=
2
1
×32×4
=64\ cm^2=64 cm
2
Area of frame=2{(area of trapezium QBCR)+(area of trapezium SRCD)}
=2(96+64)
=2(160)
=320\ cm^2=320 cm
2