Math, asked by lavanyagautam8, 1 year ago

the adjacent sides of parallelogram abcd measure 34cm and 20cm and the diagonal ac measure 42cm. find the area of parallelogram​

Answers

Answered by muskanmysterygir4578
4

area = (34 × 20) cm

= 680 cm sq


Anonymous: okayy kk
Anonymous: nice look
1a2b3c4d5e6f: tq
1a2b3c4d5e6f: gd 9it
1a2b3c4d5e6f: bye
Anonymous: byee
Anonymous: tc
Anonymous: nyc to see you
1a2b3c4d5e6f: u too
Anonymous: byee 2
Answered by Anonymous
26

\huge\bold\blue{\underline{\underline{Answer!!}}}

Let AB = 34cm and BC = 20cm can be adjacent sides of a parallelogram ABCD and the diagonal AC= 42cm divides it into two equal parts.

Let \textbf{s} be the semi-perimeter of ∆ABC, then

s = \sf\frac{AB+BC+CA}{2}

s = \sf\frac{34+20+42}{2} cm.

s = \sf\frac{96}{2} = 48cm

  • s - AB = (48-34)=14cm
  • s - BC = (48-20)=28cm
  • s - AC = (48-42) = 6cm.

\therefore Area of ∆BAC \implies \sf\sqrt{(s-a)(s-b)(s-c)}

\implies \sf\sqrt{48×14×28×6}\sf{cm}^{2}

\implies\sf\sqrt{3×16×14×14×2×2×3}\sf{cm}^{2}

\implies\sf\sqrt{2^2×3^2×4^2×14^2}\sf{cm}^{2}

\implies \sf{(2×3×4×14)}\sf{cm}^{2}

\huge{\boxed{\boxed{336 cm^2}}}

★ Area of parallelogram ABCD = 2 × Area of ∆ABC

= (2×336) cm².

= \bf{672 cm^2}

Similar questions