Math, asked by wahedabegumwahedabeg, 6 months ago

The adjecant figure consists of four small semi-circles of equal radius and two big semi-circles of equal radius (each 42cm). Find the area of the shaded region.​

Attachments:

Answers

Answered by Anonymous
66

{\bold{\underline{\underline{Answer:}}}}

{\tt{\therefore{Area\:of\:shaded\:region=82.6875\pi\:m^2=259.875\:m^2}}}

 \sf{Given : } \\ \sf  \implies \: Diameter \: of \: small \: semi \: circle (r_{2})= 10.5 \: m \\  \\ \sf  \implies \: Diameter \: of \: big \: semi \: circle( r_{1})=  21\: m \\  \\ \sf{To \: Find : } \\   \sf\implies Area \: of \: shaded \: region =?

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \implies  r_{1} =  \frac{21}{2}  = 10.5 \: m \\  \\ \implies  r_{2} =  \frac{10.5}{2}  =  5.25\: m \\  \\  \bold{Using \: formula \: of \: semi \: circle(For \: big \: semi \: circle)} \\ \sf  \implies Area \: of \: 2 \: semi \: circle = 2 \times  \frac{\pi {r}^{2} }{2}  \\  \\ \sf  \implies Area \: of \: 2 \: semi \: circle = \pi \times  {10.5}^{2}  \\  \\ \sf  \implies Area \: of \: 2 \: semi \: circle =110.25\pi { \: m}^{2}  \\  \\  \bold{Similarly(For \: small \: semi \: circle)} \\ \sf  \implies Area \: of \: 2 \: \: semi \: circle =2 \times  \frac{\pi}{2}  { r_{2}}^{2}  \\  \\ \sf  \implies Area \: of \: 2 \: semi \: circle =\pi \times  {5.25}^{2}  \\  \\ \sf  \implies Area \: of \: 2 \: semi \: circle =27.5625\pi \:  {m}^{2}  \\  \\  \bold{For \: area \: of \: shaded \: region} \\  \sf \implies Area \: of \: shaded \: region  =Area \: of \: (big - small)semi \: circle \\  \\ \sf \implies Area \: of \: shaded \: region =110.25\pi - 27.5625\pi \\  \\ \sf \implies Area \: of \: shaded \: region =82.6875 \pi\:  {m}^{2}=259.875\:m^2


amansharma264: nice
Answered by BrainlyConqueror0901
99

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Area\:of\:shaded\:region=259.875\:m^2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline{\bold{Given :}}} \\ \tt: \implies  Diameter \: of \: big \: semi -circle(r_{1}) = 21\: m \\  \\ \tt: \implies  Diameter \: of \: small\:semi- circle (r_{2})= 10.5\: m \\  \\  \red{\underline{\bold{To\:Find :}}} \\ \tt: \implies  Area \: of \: shaded \: region =?

• According to given question :

 \green{\star}\tt\:  r_{1} =  \frac{21}{2}  = 10.5 \: m \\  \\ \green{\star}\tt\:   r_{2} =  \frac{10.5}{2}  =  5.25\: m \\  \\  \bold{As\:we\:know\:that} \\ \tt: \implies Area \: of \: big\:circle = 2 \pi r_{1}^{2}  \\  \\ \tt: \implies Area \: of \: big\:circle = \frac{22}{7} \times  {10.5}^{2}  \\  \\ \tt: \implies Area \: of \: big\:circle = 346.5{ \: m}^{2}  \\  \\  \bold{Similarly:} \\ \tt: \implies Area \: of \: small\:circle =  \frac{\pi}{2}  { r_{2}}^{2}  \\  \\ \tt: \implies Area \: of \: small\:circle = \frac{22}{7} \times  {5.25}^{2}  \\  \\ \tt: \implies Area \: of \: small\:circle = 86.625\:m^2 \\  \\  \bold{For \: area \: of \: shaded \: region} \\  \tt:\implies Area \: of \: shaded \: region  = Area \: of \: (big\:circle - small \: circle) \\  \\ \tt:\implies Area \: of \: shaded \: region =346.5 - 86.625 \\  \\ \tt:\implies Area \: of \: shaded \: region =259.875\:  {m}^{2}


amansharma264: Great
Similar questions
Math, 1 year ago