The aerea of three adjacent faces of a cuboid are x,y and z. If the volume is v, prove that v square = xyz
Answers
Answered by
1
x=l x b
y=b x h
z=l x h
v^2= l^2 x b^2 x h^2
(volume of cuboid=l x b x h)
so,
v^2=(lxb)x(lxh)x(bxh)
v^2=l^2 x b^2 x h^2
substitute v^2
l^2 x b^2 x h^2=l^2 x b^2 x h^2
Hence proved
y=b x h
z=l x h
v^2= l^2 x b^2 x h^2
(volume of cuboid=l x b x h)
so,
v^2=(lxb)x(lxh)x(bxh)
v^2=l^2 x b^2 x h^2
substitute v^2
l^2 x b^2 x h^2=l^2 x b^2 x h^2
Hence proved
Similar questions