Math, asked by iamriya51, 9 months ago

The age of a father is twice the square of the age of his son. Eight years hence, the age of his father will be 4 years more than 3 times the age of the son. Find their present ages.​

Answers

Answered by BasuM
0

Answer:

the solve to your problem.....

Attachments:
Answered by pdhankhar2006
1

Answer:

Step-by-step explanation:

Let the present age of the son be x.

Age of Father = 2(x^2)

After 8 years,

Age of son = x + 8

Age of Father = 2(x^2) + 8                                  - (1)

Also, age of father = 3(x + 8) + 4                        - (2)

From (1) and (2) -

2x^2 + 8 = 3(x + 8) + 4

              = 3x + 24 + 4

              = 3x + 28

2x^2 - 3x + 8 - 28 = 0

2x^2 - 3x - 20 = 0

2x^2 - 8x + 5x - 20 = 0

2x(x - 4) + 5(x - 4) = 0

(2x + 5)(x - 4) = 0

2x + 5 = 0                                        OR                                x - 4 = 0

        x = -5/4(Not Possible)                                                      x = 4

Therefore,

                Present age of son = 4 years

                Present age of father = 2(4)^2

                                                     = 2(16)

                                                     = 32 years

Similar questions