Math, asked by brainy4456, 5 months ago

The age of michel and andy are in ratio 9:4 seven years hence ratio of their ages will be 5:3. Find their present ages....​

Answers

Answered by snehitha2
6

Answer:

The present age of Michael = 18 years

The present age of Andy = 8 years

Step-by-step explanation:

Given :

  • The ages of Michael and Andy are in ratio 9:4
  • Seven years hence ratio of their ages will be 5:3

To find :

their present ages

Solution :

Since their present ages are in the ratio 9 : 4, let

the present age of Michael be 9x

and the present age of Andy be 4x

After 7 years,

Michael's age = (9x + 7) years

Andy's age = (4x + 7) years

As given,

  \tt \dfrac{9x+7}{4x+7}=\dfrac{5}{3} \\\\ \tt 3(9x+7)=5(4x+7) \\\\ \tt 27x+21=20x+35 \\\\ \tt 27x-20x=35-21 \\\\ \tt 7x=14 \\\\ \tt x=14/7 \\\\ \tt x=2

The present age of Michael = 9(2) = 18 years

The present age of Andy = 4(2) = 8 years

Verification :

  • The present age of Michael = 18 years
  • The present age of Andy = 8 years

Condition - 1 :

Their ages are in the ratio 9 : 4

 18 : 8 = 9 : 4

 2(9) : 2(4) = 9 : 4

   9 : 4 = 9 : 4

  LHS = RHS

Condition - 2 : Seven years hence ratio of their ages will be 5:3

After seven years,

Michael's age = 18+7 = 25

Andy's age = 8+7 = 15

 25 : 15 = 5 : 3

 5(5) : 5(3) = 5 : 3

  5 : 3 = 5 : 3

  LHS = RHS

Hence verified!


brainy4456: Thanks buddy
Anonymous: Great :)
Answered by iTzShInNy
34

 \large \bigstar{ \underline{ \underline{ \bf \red{ ConCepT}}}} \bigstar\leadsto

 \small \bf Here  \: in  \: this \: Question, We \: have \: to \: \\  \small \bf  find \: out \: the \: present \: age \: of  \: Michael  \\  \small \bf and \:  Andy \: if \: their \: ages \:  are\: in  \: the  \\ \small  \bf\: ratio  \: of  \: 9:4 \: and \: After \: seven \: years \: \\  \small \bf their \: ages \: will \: be \: in \: the \: ratio \: of \: 5:3.

══════ •『 ♡ 』• ══════

 \\  \\

 \large \bigstar{ \underline{ \underline{ \bf \blue{ GiVeN}}}} \bigstar\leadsto

 \\

  •  \small \bf The \: ages \: of \: Michael \: and \:  \: Andy \\  \small \bf are\: in  \: the  \:  ratio  \: of  \: 9:4 \:

 \\

  •  \small \bf After \: seven \: years  \: the    \: ages \: of \\ \small \bf\: Michael \: and \: Andy \:  will \: be  \\  \small \bf\: in \: the \: ratio \: of \: 5:3.

 \\

══════ •『 ♡ 』• ══════

 \\  \\

 \large \bigstar{ \underline{ \underline{ \bf \pink{ To \: FinD}}}} \bigstar\leadsto

 \\

  •  \small \bf \: The  \: Present \: age \: of \: Michael \\  \small \bf and  \: Andy

══════ •『 ♡ 』• ══════

 \\  \\

 \large \bigstar{ \underline{ \underline{ \bf \green{ SoLuTioN}}}} \bigstar\leadsto

 \\

 \small \bf \: Let,

 \small \bf \:\\  \small \bf    \pink\bigstar the \:  present  \: age \:  of \: Michael  \: be \: 9x \\   \small \green\bigstar \bf the \:  present  \: age \:  of \: Andy  \: be \: 4x  \:  \:  \:  \:  \:

  \small \bf \underline{After \: 7 \: years,} \\

 \small \bf  \color{lime}{\bigstar }\: \color{navy} {Michael's  \: age \: will \: be \longrightarrow  \boxed{ \sf \green{ (9x  + 7)}}} \\

 \small \bf  \color{lime}{\bigstar }\: \color{navy} {Andy's  \: age \: will \: be \longrightarrow  \boxed{ \sf \green{ (4x  + 7)}}}

 ⟹  \bf\:   \frac{(9x + 7)}{(4x + 7)} = \frac{5}{3}  \\  \\

 ⟹  \bf\:   3(9x + 7) = 5(4x + 7) \\  \\

 ⟹ \bf\:   27x + 21 = 20x + 35 \\  \\

 ⟹  \bf\:   27x - 20x = 35 - 21 \\  \\

 ⟹  \bf\:  7x = 14\\  \\

 ⟹  \bf\:   x =  \frac{ \cancel{14}} {\cancel{2}  } \\  \\

 ⟹ \bf\:   x = 2 \\  \\

══════ •『 ♡ 』• ══════

 \\  \\

  \bf\therefore \small \bf  \color{brown}{\bigstar }\: \color{darkgreen} {Michael's  \: present \:  age \: will \: be \pink \leadsto \red {9x}}    \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \small \leadsto \bf 9 \times 2 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \small \bf \leadsto 18

\bf\therefore \small \bf  \color{brown}{\bigstar }\: \color{darkgreen} {Andy's  \: present \:  age \: will \: be \pink \leadsto \red {4x}}    \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \small \leadsto \bf 4 \times 2 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \small \bf \leadsto 88

══════ •『 ♡ 』• ══════

 \\

\\  \bigstar{ \underline{ \underline  \pink{  \sf★@iTzShInNy☆}}} \bigstar \\  \\

 \\

══════ •『 ♡ 』• ══════


kushmita07: How can u give multiple thanks in one answer ..
Similar questions