Math, asked by Shakaffatma05, 1 month ago

the ages hari and harry are in the ratio 5:7 Four years from now the ratio of their ages will be 3:4 Find their presentage ages​

Answers

Answered by Anonymous
126

Answer:

Given :-

  • The ages of Hari and Harry are in the ratio of 5 : 7.
  • Four years from now the ratio of their ages will be 3 : 4.

To Find :-

  • What is their present ages.

Solution :-

Let,

\leadsto \bf{Present\: age\: of\: Hari =\: 5x\: years}

\leadsto \bf{Present\: age\: of\: Harry =\: 7x\: years}

Four years from now :

\mapsto \sf Age\: of\: Hari =\: (5x + 4)\: years

\mapsto \sf Age\: of\: Harry =\: (7x + 4)\: years

According to the question,

\implies \bf (5x + 4) : (7x + 4) =\: 3 : 4

\implies \sf \dfrac{5x + 4}{7x + 4} =\: \dfrac{3}{4}

By doing cross multiplication we get,

\implies \sf 3(7x + 4) =\: 4(5x + 4)

\implies \sf 21x + 12 =\: 20x + 16

\implies \sf 21x - 20x =\: 16 - 12

\implies \sf\bold{\purple{x =\: 4\: years}}

Hence, the required ages of Hari and Harry are :

Present Age of Hari :

\longrightarrow \sf Present\: Age_{(Hari)} =\: 5x\: years

\longrightarrow \sf Present\: Age_{(Hari)} =\: 5 \times 4\: years

\implies \sf\bold{\red{Present\: Age_{(Hari)} =\: 20\: years}}

Present Age of Harry :

\longrightarrow \sf Present\: Age_{(Harry)} =\: 7x\: years

\longrightarrow \sf Present\: Age_{(Harry)} =\: 7 \times 4\: years

\longrightarrow \sf\bold{\red{Present\: Age_{(Harry)} =\: 28\: years}}

{\small{\bold{\underline{\therefore\: The\: present\: age\: of\: Hari\: and\: Harry\: is\: 20\: years\: and\: 28\: years\: respectively\: .}}}}

Answered by Anonymous
540

 \large   \underline \bold  \green { Given:- \: } \\  \\

 \bold{\bold\rightarrow\:The \:  \:  ages  \:  \: Hari  \:  \: and  \:  \: Harry  \:  \: are \:  \:  in  \:  \: the    \:  \: ratio  \: 5:7 \: } \\

 \bold{\bold\rightarrow\:Four  \:  \: years \:  \:  from  \:  \: now  \:  \: the  \:  \: ratio \:  of \:  their   \: }

 \bold{ages \:  will  \: be  \: 3:4} \\  \\

 \large   \underline \bold  \blue{ to \: find \: :- \: } \\  \\

 \bold{ \bold\rightarrow\: what \: is \: their \: percentage} \\

 \large   \underline \bold  \blue{ Solution \: :- \: } \\  \\

 \bold  {  Let \:  Hari's  \: age = 5 \: x  \: years} \\ \\ \: </p><p></p><p> \bold {and \: harry 's\:  \: age = 7 \: x \: years }  \\ \\

 \bold \red {after \: four \: years, \: } \\  \\

 \bold{Hari 's  \:  \: age  \: = (5x + 4)  \: years} \\  \\</p><p>\bold{and \:Harry's  \: age \:  =   (7x + 4)  \: years} \\  \\ </p><p>

 \bold  \pink{given  \: \: that, \:   } \\  \\

 \bold{The \:  \:  ratio  \: of  \: Hari's \:  age  \: and  \: Harry \:}   \\ \:

\bold{age  \: after \:  4  \: years  \: from  \: now = 3:4 \: } \:  \\  \\

 \bold { \bold\rightarrow \frac{ \:Hari's \:  age  \: after \:  4  \: years \:   }{ \:Harry's  \: age \:  after  \: 4 \:  years   \: } =  \frac{3}{4}  } \\ \:

 \bold { \bold\rightarrow \frac{  5x + 4 \:  }{  7x + 4} =  \frac{3}{4}  } \\ \:

 \bold { \bold\rightarrow 4 (5x+4)=3 (7x+4) \:  \:  } \\  \:

 \bold { \bold\rightarrow \: 20x + 16 = 21x + 12 \: \:  } \\ \:

 \bold { \bold\rightarrow  16-12  = 21x- 20x \: \:  } \\  \:

 \bold { \bold\rightarrow \: 4 = x  } \\  \:

\bold  \green  { \bold\rightarrow \: x \:  =   4} \\  \:  \\

 \bold \pink{Therefore,} \\

 \bold {Present  \: age  \: of  \: Hari = 5x = 5 x \:  4  \:   \:  \: }

\bold \blue{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 20years} \:  \\  \\

 \bold {Present  \: age  \: of  \: Harry= 7x = 7  \: x  \: 4  \: }

\bold \purple{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 28 \: years} \:

Similar questions