Math, asked by chinmay31kurha, 4 months ago

the ages of A and B are in the ratio 3:5 . Eight years hence , their ahes will be in the ratio 5:7. Find their present ages ​

Answers

Answered by MagicalBeast
5

Given :

  • Ratio of age of A and B = 3:5
  • Eight years hence, Ratio of age of A and B =5:7

To find :

Present age of A & B

Solution :

Part 1) Present

Let ,

Present age of A = x years

Present age of B = y years

\sf \implies \:  A  \: :  \: B \:  =  \: 3  \: :  \: 5 \\\\\sf \implies  \: \dfrac{x }{y}  \: = \:  \dfrac{3}{5}\\\\\sf \implies  \: x =  \dfrac{3}{5} y \:  \:  \:  \: ..........equation \: 1

_______________________________________________

Part 2) 8 year later

Age of A = x+8

Age of B = y+8

\sf \implies \:  (x+8) \:  :  \: (y+8) \:=\: 5\::\:7\\\\ \sf \implies \:  \dfrac{x+8}{y+8}\:=\: \dfrac{5}{7} \\\\  \:  \sf \implies \: 7(x + 8) \:  =  \: 5(y + 8) \\  \\  \sf \implies \: 7x  \: +  \: 56  \: = \:  5y  \: + \:  40 \\  \\  \sf \implies \:7x - 5y = 40 - 56 \\  \\ \sf \implies \:7x - 5y =  - 16 \\  \sf \: put \: value \: of \: x \: from \: equation \: 1 \\  \sf \implies \: 7( \dfrac{3y}{5} ) - 5y =  - 16 \\  \\ \sf \implies \: \dfrac{21y}{5}  - 5y =  - 16 \\  \\ \sf \implies \: \:  \dfrac{(21y \times 1) - (5y \times 5)}{5}  =  - 16 \\  \\ \sf \implies \: \dfrac{ 21y - 25y}{5}  =  - 16 \\  \\ \sf \implies \: \dfrac{ - 4y}{5}  =  - 16 \\  \\ \sf \implies \: - 4y =  - 16 \times 5 \\  \\ \sf \implies \:y =  \dfrac{ - 80}{ - 4}  \\  \\ \sf \implies \:y \:  = \:  20

_______________________________________________

On putting value of y in equation 1, we get;

 \sf \implies \: x \:  =  \dfrac{3}{5}  \times 20 \\  \\ \sf \implies \: x \:  =  3 \times 4 \\  \\ \sf \implies \: x \:  =  12

_______________________________________________

ANSWER :

  • Present age of A = x = 12 years
  • Present age of B = y = 20 years
Similar questions