Math, asked by s2385kailashs00156, 1 month ago

The ages of Hari and Harry are in the ratio 2:5. 5 years from now the ratio of their ages wil be 3:5 . The present age of Hari is *​

Answers

Answered by Anonymous
17

Answer:

Given :-

  • The ages of Hari and Harry are in the ratio of 2 : 5.
  • 5 years from now the ratio of their ages will be 3 : 5.

To Find :-

  • What is present age of Hari.

Solution :-

Let,

Present age of Hari be 2x years

Present age of Harry will be 5x years

Five years from now their ages will be :

Age of Hari = 2x + 5

Age of Harry = 5x + 5

According to the question,

\implies \sf (2x + 5) : (5x + 5) =\: 3 : 5

\implies \sf \dfrac{2x + 5}{5x + 5} =\: \dfrac{3}{5}

By doing cross multiplication we get,

\implies \sf 3(5x + 5) =\: 5(2x + 5)

\implies \sf 15x + 15 =\: 10x + 25

\implies \sf 15x - 10x =\: 25 - 15

\implies \sf 5x =\: 10

\implies \sf x =\: \dfrac{\cancel{10}}{\cancel{5}}

\implies \sf\bold{\purple{x =\: 2}}

Hence, their present ages are :

Present Age Of Hari :

Present Age Of Hari = 2x years

Present Age Of Hari = (2 × 2) years

Present Age Of Hari = 4 years

Present Age Of Harry :

Present Age Of Harry = 5x years

Present Age Of Harry = (5 × 2) years

Present Age Of Harry = 10 years

{\small{\bold{\underline{\therefore\: The\: present\: age\: of\: Hari\: is\: 4\: years\: .}}}}


MasterDhruva: Keep it up :D
Answered by Sɴɪɢᴅʜᴀ
28

{ \textbf{\textsf{ \underline{ \underline{{Given \: :}{\quad}}}}}}

  • The ages of Hari and Harry are in the ratio 2:5. Five years from now the ratio of their ages wil be 3:5.

{ \textbf{\textsf{ \underline{ \underline{{To Find \: :}{\quad}}}}}}

  • Present age of Hari.

{ \textbf{\textsf{ \underline{ \underline{{Solution \: :}{\quad}}}}}}

  • Let's assume the present age of Hari as 2y.

  • Let's assume the present age of Harry as 5y.

 \bigstar \:  \: { \underline{ \boldsymbol{ \underline{After \:  Five  \: years \:  their  \: ages \:  will \:  be:}}}}

➬ Hari's age = 2y + 5

➬ Harry's age = 5y + 5

 {\textbf {\textsf{Now, According to the Question \: :}}}

 \\ \tt⇢(2y+5):(5y+5)=3:5 \\  \\  \\ ⇢ \tt \:  \dfrac{2y + 5}{5y + 5} =\: \dfrac{3}{5} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\

By doing cross multiplication we get,

⇢ \:  \tt 3(5y+ 5) =\: 5(2y + 5)\\  \\  \\ ⇢ \tt15y + 15 = 10y+ 25 \:  \:  \\  \\  \\ ⇢ \tt15y - 10y = 25 - 15 \\  \\  \\ ⇢ \:  \:  \tt5y = 10 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ \tt  ⇢ \:  \: y =  \frac{10}{5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \tt \: ⇢ \:  \:  \:  \:  \:  { \boxed{\pink{ \pmb{ \mathfrak{y = 2}}}}}\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Therefore, their present ages are :

\begin{gathered} \\ ⇢ { \textbf{ \textsf{Present age of  Hari}}} = \tt 2y \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: = \tt \: 2 \times 2\\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \tt \:  \pmb{\mathfrak{4  \: years}}\\ \\ \end{gathered}

\begin{gathered} \\ ⇢ { \textbf{ \textsf{Present age of  Hari}}} = \tt 5y \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: = \tt \: 5 \times 2\\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \tt \:  \pmb{\mathfrak{10  \: years}}\\ \\ \end{gathered}

Hence, The Present age of Hari and Harry are 4 years and 10 years.

Similar questions