Math, asked by chandansingh53957251, 10 months ago

The ages of Ranu and Anu are is the ratio 3 : 4. Twelve years later, the ratio of their ages will be 5 : 6.
Find their present ages.

Answers

Answered by mrpalashroy
1

Step-by-step explanation:let the age of ranu and Anu be x then

3x+12+4x+12=5x+6x then,

3x+4x+12+12=11x7x+24=11x24=11x-7x=4x

x=24/4=6x=6 then 6*3=18 and

6*4=24then ranu's age is 18 and anu's age is 24

Answered by Anonymous
8

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ present \ ages \ of \ Ranu \ and \ Anu}

\sf{are \ 18 \ and \ 24 \ years \ respectively. }

\sf\orange{Given:}

\sf{\implies{The \ ages \ of | Ranu \ and \ Anu \ are}}

\sf{in \ the \ ratio \ of 3:4.}

\sf{\implies{12 \ years \ later, \ the \ ratio \ of \ their}}

\sf{Ages \ will \ be \ 5:6}

\sf\pink{To \ find:}

\sf{Present \ ages \ of \ Ranu \ and \ Anu.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Method(I) \ By \ using \ two \ variables}

\sf{Let \ the \ age \ of \ Ranu \ be \ x \ and \ age}

\sf{of \ Anu \ be \ y.}

\sf{According \ to \ first \ condition}

\sf{x:y=3:4}

\sf{\therefore{\frac{x}{y}=\frac{3}{4}}}

\sf{\therefore{4x=3y}}

\sf{\therefore{4x-3y=0...(1)}}

\sf{According \ to \ second \ condition}

\sf{\frac{x+12}{y+12}=\frac{5}{6}}

\sf{\therefore{6(x+12)=5(y+12)}}

\sf{6x+72=5y+60}

\sf{\therefore{6x-5y=-12...(2)}}

\sf{Multiply \ equation(1) \ by \ 3 \ we \ get,}

\sf{12x-9y=0...(3)}

\sf{Multiply \ equation(2) \ by \ 2 \ we \ get,}

\sf{12x-10y=-24...(4)}

\sf{Subtract \ equation(4) \ from \ equation(3)}

\sf{12x-9y=0}

\sf{-}

\sf{12x-10y=-24}

_________________________

\boxed{\sf{\therefore{y=24}}}

\sf{Substitute \ y=24 \ in \ equation(1) \ we \ get,}

\sf{4x-3(24)=0}

\sf{4x-72=0}

\sf{4x=72}

\sf{x=\frac{72}{4}}

\boxed{\sf{\therefore{x=18}}}

\sf{Ranu's \ age=x=18 \ years.}

\sf{Anu's \ age=y=24 \ years.}

\sf\purple{\tt{\therefore{The \ present \ ages \ of \ Ranu \ and \ Anu}}}

\sf\purple{\tt{are \ 18 \ and \ 24 \ years \ respectively. }}

_______________________________________

______________________________________________________________________________

\sf{Method(II) \ By \ single \ variable.}

\sf{Let \ the \ common \ factor \ be \ x.}

\sf{According \ to \ first \ condition}

\sf{Ratio \ of \ their \ present \ ages=\frac{3x}{4x}}

\sf{\therefore{Ranu's \ age=3x}}

\sf{Anu's \ age=4x}

\sf{According \ to \ second \ condition}

\sf{\frac{3x+12}{4x+12}=\frac{5x}{6x}}

\sf{\therefore{6x(3x+12)=5x(4x+12)}}

\sf{\therefore{18x^{2}+72x=20x^{2}+60x}}

\sf{\therefore{18x^{2}-20x^{2}+72x-60x=0}}

\sf{\therefore{-2x^{2}+12x=0}}

\sf{\therefore{-2x(x-6)=0}}

\sf{\therefore{-2x=0 \ or \ x-6=0}}

\sf{\therefore{x=0 \ or \ x=6}}

\sf{But, \ x \ can't \ be \ 0}

\boxed{\sf{\therefore{x=6}}}

\sf{Ranu's \ age=3(6)=18 \ years.}

\sf{Anu's\ age=4(6)=24 \ years.}

\sf\purple{\tt{\therefore{The \ present \ ages \ of \ Ranu \ and \ Anu}}}

\sf\purple{\tt{are \ 18 \ and \ 24 \ years \ respectively. }}

Similar questions