Math, asked by aminashanifa323, 10 months ago

The algebraic form of an arithmetic sequence is 4n+3
a.what is the sum of its first and 20th term?
b.wgat is the sum of first 20 terms of this sequence?​

Answers

Answered by BrainlyConqueror0901
46

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Sum\:of\:first\:and\:20th\:term=90}}}

\green{\tt{\therefore{Sum\:of\:first\:20\:term=900}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies  A.P = 4n + 3 \\ \\   \green{\underline \bold{Given :}} \\  \tt:  \implies Sum \: of \: first \: and \: 20th \: term =?  \\  \\ \tt:  \implies Sum \: of \: first \: 20 \: terms =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:\implies  a_{n} = 4n + 3 \\  \\ \tt:\implies  a_{1} =4 \times 1 + 3 \\  \\  \green{\tt:\implies  a_{1} =7} \\  \\  \bold{Similarly:} \\ \tt:\implies  a_{2} = 4 \times 2 + 3 \\  \\   \green{\tt:\implies  a_{2} = 11} \\  \\  \bold{Similarly : } \\ \tt:\implies  a_{3} = 4 \times 3 + 3 \\  \\  \green{\tt:\implies  a_{3} =15} \\  \\   \green{\tt \circ \: Common \: difference = 4} \\  \\  \bold{For \: sum \: of \:first \: and \: 20th \: term : } \\  \tt:  \implies  a_{1} +  a_{20} = 7 +( 7  + 19 \times 4) \\  \\ \tt:  \implies  a_{1} +  a_{20} =7 + 83 \\  \\  \green{\tt:  \implies  a_{1} +  a_{20} =90} \\  \\  \bold{For \: sum \: of \: first \: 20 \: term : } \\ \tt:  \implies  s_{n} = \frac{n}{2} (2a + (n - 1)d) \\  \\ \tt:  \implies  s_{20} =  \frac{20}{2} (2 \times 7 + (20 - 1) \times 4) \\  \\ \tt:  \implies  s_{20} = 10 \times (14 + 76) \\  \\ \tt:  \implies  s_{20} = 10 \times 90 \\  \\ \green{\tt:  \implies  s_{20} = 900}

Answered by Anonymous
42

Answers :

sum of first and 20th term = 90

sum of first 20 terms = 900

Step-by-step explanation:

Given:

⟹A.P=4n+3

Given:

Sum of first and 20th term=?

Sum of first 20 terms=?

➡️ According to the question ,

As we know that ,

⟹ an =4n+3

⟹ a1 =4×1+3

⟹ a1 =7

Similarly:

⟹ a2 =4×2+3

⟹ a2 = 11

Similarly :

⟹ a3 =4×3+3

⟹a3 =15

∘Common difference = 4

For sum of first and 20th term

⟹ a1 + a20 = 7 + ( 7 + 19 × 4 )

⟹ a1 + a20 = 7 + 83

⟹ a1 + a20 = 90

For sum of first 20 terms

⟹ Sn = n/2 (2a + (n-1) d )

⟹ S20 = 20/2 ( 2×7 + ( 20 - 1 ) × 4 )

⟹ S20 = 10 ( 14 + 76 )

⟹ S20 = 10 × 90

⟹ S20 = 900

Similar questions