The altitude AD of triangle ABC in which angle A is acute is 10 cm. if BD = 10 cm and CD = 10 √3 , what is angle of BAC?
Answers
Answered by
20
From Pythagoras theorem,
AB = √(AD² + BD²) = 10√2 cm
AC = √(AD² + CD²) = 20cm
use cosine theorem,
cos angle BAD = (AB² + AD² - BD²)/2AB.AD
= (200 + 100 - 100)/2(10√2)(10)
= 200/200√2 = 1/√2
so, cos angle BAD = 1/√2 = cos45°
angle BAD = 45°
again, cos angle DAC = (AD² + AC² - CD²)/2AD.AC
= (100 + 400 - 300)/2(10)(20)
= 200/400 = 1/2 = cos60°
hence, angle CAD = 60°
so, angle BAC = 45° + 60° = 105°
Similar questions