Math, asked by Anonymous, 20 days ago

The altitude and base of a triangle having area 600 sq. cm are in ratio 25:3. Find the altitude and the base​

Answers

Answered by Anonymous
45

 \star \; {\underline{\boxed{\pmb{\purple{\frak{ \; Given \; :- }}}}}}

  • Ratio of Base and Height = 25:3
  • Area of Triangle = 600 cm²

 \\ \\

 \star \; {\underline{\boxed{\pmb{\pink{\frak{ \; To \; Find \; :- }}}}}}

  • Base and Height = ?

 \\ \\

 \star \; {\underline{\boxed{\pmb{\green{\frak{ \; SolutioN \; :- }}}}}}

~ Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ Area{\small_{(Triangle)}} = \dfrac{1}{2} \times Base \times Height }}}}}

 \\ \qquad{\rule{150pt}{2pt}}

~ Let the Ratios :

  • Base = 25y
  • Height = 3y

 \\ \qquad{\rule{150pt}{2pt}}

~ Calculating the Value of y :

 {\dashrightarrow{\qquad{\sf{ Area = \dfrac{1}{2} \times Base \times Height }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ 600 = \dfrac{1}{2} \times 25y \times 3y }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ 600 \times 2 = 1 \times {75y}^{2} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ 1200 = {75y}^{2} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ \dfrac{1200}{75} = {y}^{2} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ \cancel\dfrac{1200}{75} = {y}^{2} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ 16 = {y}^{2} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ \sqrt{16} = y }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\pmb{\red{\frak{ y = 4 }}}}}}}}

 \\ \qquad{\rule{150pt}{2pt}}

~ Calculating the Base and Height :

  • Base = 3y = 3(4) = 12 cm
  • Height = 25y = 25(16) = 100 cm

 \\ \qquad{\rule{150pt}{2pt}}

~ Therefore :

❛❛ Base of the Triangle is 12 cm and its Height is 100 cm . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Answered by StudyKing001
27

100 m and 12 m is the answer

Similar questions