The altitude drawn to the base of an isosceles triangle is of length 8 cm and the perimeter is 32 cm. Find the area of the triangle.
Answers
Steps :
1)Let AD be the altitude of triangle ABC.
AD = 8 cm
AB = AC = a (say)
In Isosceles triangle, Altitude is median.
=> AD = CD = b (say)
2) In right angled triangle ACD,
3) Perimeter = 32 cm
=> a + a + 2b = 32
=> a + b = 16 cm ---(2)
4) Using equation (1) & (2) ,
a - b = 4 cm ---(3)
Using equation (2) ,(3) ,
a = 10cm
b = 6 cm
5) Area of Triangle,
Let the base of the isosceles triangle be '2y' and the two equal sides be 'x'.
Given perimeter of an isosceles triangle = 32.
= > x + x + 2y = 32
= > 2x + 2y = 32
= > x + y = 32/2
= > x + y = 16. -------- (1)
Now,
Given Altitude h = 8 cm.
By Pythagoras theorem, we get
= > x^2 = 8^2 + y^2
= > x^2 - y^2 = 8^2
= > x^2 - y^2 = 64
= > (x + y)(x - y) = 64
= > (16)(x - y) = 64
= > (x - y) = 64/16
= > (x - y) = 4 ------ (2)
---------------------------------------------------------------------------------------------------------------
On solving (1) & (2), we get
= > x + y = 16
= > x - y = 4
---------------------------
2x = 20
x = 10.
Substitute x = 10 in (1), we get
= > x + y = 16
= > 10 + y = 16
= > y = 6.
Now,
= > Area of triangle = (1/2) * base * height
= > (1/2) * (2y) * (8)
= > (1/2) * 12 * 8
= > 48cm^2.
Therefore, the area of triangle = 48 cm^2.
Hope this helps!