the altitude drawn to the base of the isosceles triangle is 8 cm and perimeter of the triangle is 32 . find the area of the triangle
Answers
(Diagram given in attachment)
In an Isosceles Triangle, 2 sides are equal.
Let
- AB = AC = x
Altitude divides the base of Isosceles Triangle into equal sides.
- BD = DC = y
Perimeter = Sum of all sides
⇒ Perimeter = AB + BC + CA
⇒ Perimeter = x + 2y + x
⇒ 32 = 2x + 2y
⇒ 2x + 2y = 32
⇒ 2(x + y) = 32
⇒ x + y = 32 ÷ 2
⇒ x + y = 16
⇒ x = 16 - y → → → [Equation 1]
Also, In ΔABD;
By Pythagoras Theorem,
(AB)² = (AD)² + (BD)²
⇒ x² = 8² + y²
⇒ x² = 64 + y²
Now let's substitute value of x from Equation 1
x² = 64 + y²
⇒ (16 - y)² = 64 + y²
Split using (a - b)² = a² + b² - 2ab
256 + y² - 2(16)y = 64 + y²
⇒ 256 + y² - 32y = 64 + y²
⇒ 256 - 32y = 64
⇒ 256 - 64 = 32y
⇒ 32y = 192
⇒ y = 192 ÷ 32
⇒ y = 6 cm
Substitute value of y in Equation 1 to find value of x
x = 16 - y
⇒ x = 16 - 6
⇒ x = 10 cm
Area = ¹/₂ × Base × Height
⇒ Area = ¹/₂ × 2y × 8
⇒ Area = ¹/₂ × 12 × 8
★ Area = 48 cm² ★
Solving in simple method :-
Refer attachment for Image,
Altitude of the isosceles triangle = 8
Let equal side be a.