The altitude of a right angled triangle is 7 cm less than its base. If the hypotenuse is 35 cm, find the other two sides of the triangle .
plzzzz telllll
Answers
in a right angled triangle
hypotenuse = 35cm
base = bcm
altitude = b-7cm
we know that...by Pythagoras theorem sum of squares of base and perpendicular is equal to square of hypotenuse..
=> H²=p²+b²
it's in the form of a quadratic equation ax²+bx+c = 0
so now solving the equation by quadratic formula..
so discriminant = 2401
now..we know that..
so,
so possible measurements of base is 28cm and 21cm
→ altitude = b-7
→ altitude = 28-7 or 21-7
→ altitude = 21 or 14cm
now we have to varify
H² = p²+b²
now we have to varify Pythagoras theorem with value of base is 21cm
hence,
sides of triangle are :-
base = 28cm
altitude = 21cm
hypotenuse = 35cm
Answer:
in a right angled triangle
hypotenuse = 35cm
base = bcm
altitude = b-7cm
we know that...by Pythagoras theorem sum of squares of base and perpendicular is equal to square of hypotenuse..
=> H²=p²+b²
\begin{gathered}\implies \: {35}^{2} = {b}^{2} + {(b - 7)}^{2} \\ \implies \: 1225 = {b }^{2} + {b}^{2} + 49 - 14b \\ \implies \: 2 {b}^{2} - 14b = 1225 - 49 \\ \implies \: 2 {b}^{2} - 14b = 1176 \\ \implies \: 2 {b}^{2} - 14b - 1176 = 0 \\ \bold{now \: divide \: the \: equation \: by \: 2} \\ \\ \implies \: {b}^{2} - 7b - 588 = 0\end{gathered}
⟹35
2
=b
2
+(b−7)
2
⟹1225=b
2
+b
2
+49−14b
⟹2b
2
−14b=1225−49
⟹2b
2
−14b=1176
⟹2b
2
−14b−1176=0
nowdividetheequationby2
⟹b
2
−7b−588=0
it's in the form of a quadratic equation ax²+bx+c = 0
so now solving the equation by quadratic formula..
\begin{gathered}d = {b}^{2} - 4ac \\ \implies \: d = {( - 7)}^{2} - 4 \times ( - 588) \\ \implies \: d = 49 + 2352 \\ \implies \: d = 2401\end{gathered}
d=b
2
−4ac
⟹d=(−7)
2
−4×(−588)
⟹d=49+2352
⟹d=2401
so discriminant = 2401
now..we know that..
\bold{x = \frac{ - b \: ± \: \sqrt{d} }{2a} }x=
2a
−b±
d
so,
\begin{gathered}\bold{b = \frac{- ( - 7)± \sqrt{2401}}{2} } \\ \implies \: b = \frac{7±49}{2} \\ \implies \: b = \frac{7 + 49}{2} \: and \: b = \frac{7 - 49}{2} \\ \implies \: b = \frac{56}{2} \: and \: b = \frac{42}{2} \\ \implies \: b = 28 \: and \: b = 21\end{gathered}
b=
2
−(−7)±
2401
⟹b=
2
7±49
⟹b=
2
7+49
andb=
2
7−49
⟹b=
2
56
andb=
2
42
⟹b=28andb=21
so possible measurements of base is 28cm and 21cm
→ altitude = b-7
→ altitude = 28-7 or 21-7
→ altitude = 21 or 14cm
now we have to varify
H² = p²+b²
\begin{gathered}{(35)}^{2} = {(28)}^{2} + {(21)}^{2} \\ \implies \: 1225 = 784 \: + \: 441 \\ \implies \: 1225 = 1225 \\ → lhs = rhs \\ so \: base \: = 28cm \: and \: altitude \: = 21cm\end{gathered}
(35)
2
=(28)
2
+(21)
2
⟹1225=784+441
⟹1225=1225
→lhs=rhs
sobase=28cmandaltitude=21cm
now we have to varify Pythagoras theorem with value of base is 21cm
\begin{gathered}{(35)}^{2} = {(21)}^{2} + {(14)}^{2} \\ \implies \: 1225 = 441 + 196 \\ \implies \: 1225 = 637 \\ →lhs ≠ \: rhs \\ so \: value \: of \: base \: is \: 21 \: is \: not \: possible \\ for \: a \: right \: angled \: triangle\end{gathered}
(35)
2
=(21)
2
+(14)
2
⟹1225=441+196
⟹1225=637
→lhs
=rhs
sovalueofbaseis21isnotpossible
forarightangledtriangle
hence,
sides of triangle are :-
base = 28cm
altitude = 21cm
hypotenuse = 35cm