Math, asked by abishekparveen, 11 months ago

the altitude of a right triangle is 7 cm less than its base if the hypotenuse is 13 cm find the other two sides​

Answers

Answered by ritik8217
3

base 12cm and the hypotenuse is 5 cm

Answered by xItzKhushix
33

\huge\star{\pink{\underline{\underline{\mathscr{Explanation:}}}}}

______________________________

Given that:-

  • The altitude of a right triangle is 7 cm less than its base.

  • Hypotenuse of right angled triangle = 13cm

To find:-

  • The other two sides.

______________________________

Let ,the base of the right triangle be x cm.

Given, the altitude of right triangle = (x – 7) cm

From Pythagoras theorem,

\boxed{\red{Base^2+Altitude^2×=Hypotenuse^2}}

∴ x^2 + (x – 7)2 = 132

\hookrightarrowx^2 + x2 + 49 – 14x = 169

\hookrightarrow 2x^2 – 14x – 120 = 0

\hookrightarrow x^2 – 7x – 60 = 0

 \hookrightarrowx^2 – 12x + 5x – 60 = 0

\hookrightarrow x(x – 12) + 5(x – 12) = 0

\hookrightarrow(x – 12)(x + 5) = 0

Thus, either x – 12 = 0 or x + 5 = 0,

\implies x = 12 or x = – 5

Since sides cannot be negative, x can only be 12.

\huge\star Therefore, the base of the given triangle is 12 cm

\huge\star The altitude of this triangle will be (12 – 7) cm = 5 cm.

\huge{\blue{\underline{\mathrm{Hence,Solved}}}}

Similar questions