Math, asked by shashi1092, 8 months ago

The altitude of a right triangle is 7cm
less than its base. If the hypoteneuse is
13cm. find the other two sides.
19​

Answers

Answered by Anonymous
18

Given :

  • Let's base of triangle = x cm

  • Altitude of triangle = x - 7 cm

  • Hypotenuse of triangle = 13 cm

To Find :

  • Base of triangle and altitude of triangle

Solution :

By using Pythagoras theorem

\large\implies\boxed {\boxed {\sf {h}^{2} =  {b}^{2} +  {p}^{2} }}\\  \\  \sf \implies {(13)}^{2} =  {(x)}^{2} +  {(x - 7)}^{2} \\  \\ \sf \implies169 =  {x}^{2} +  {x}^{2} + 49 - 14x \\  \\ \sf \implies169 - 49 = 2 {x}^{2} - 14 \\  \\ \sf \implies120 =  2{x}^{2}  - 14x \\  \\ \sf \implies 2{x}^{2} - 14x  - 120 = 0 \\ \\ \sf \implies {x}^{2} - 7x - 60 = 0

By splitting middle term

 \sf \implies{x}^{2} - 12x + 5x - 60 = 0 \\  \\ \sf \implies x(x - 12)  + 5(x - 12) = 0 \\  \\ \sf \implies(x + 5)(x - 12) = 0 \\  \\ \sf \implies x =  - 5 \\  \\ \sf \implies x = 12

Here x have two values. But length can't be negative. So value of x is 12

Base oftriangle = 12 cm

Altitude of triangle = 12 - 7 = 5 cm

Answered by Anonymous
53

Answer:

⋆ DIAGRAM :

\setlength{\unitlength}{1.5cm}\begin{picture}(6,2)\linethickness{0.5mm}\put(7.7,2.9){\large\sf{A}}\put(7.7,1){\large\sf{B}}\put(10.6,1){\large\sf{C}}\put(8,1){\line(1,0){2.5}}\put(8,1){\line(0,2){1.9}}\qbezier(10.5,1)(10,1.4)(8,2.9)\put(7.1,2){\sf{\large{(n - 7)}}}\put(9,0.7){\sf{\large{n}}}\put(9.4,1.9){\sf{\large{13 cm}}}\put(8.2,1){\line(0,1){0.2}}\put(8,1.2){\line(3,0){0.2}}\end{picture}

\rule{120}{1}

Let the Base be n and Altitude be (n - 7) of Right Angled Triangle respectively.

\underline{\bigstar\:\sf{By\: Pythagoras\: Theorem :}}

:\implies\sf (Hypotenuse)^2=(Altitude)^2+(Base)^2\\\\\\:\implies\sf (AC)^2=(AB)^2+(BC)^2\\\\\\:\implies\sf (13)^2=(n-7)^2+(n)^2\\\\\\:\implies\sf 169 = n^2 + 49 - 14n + n^2\\\\\\:\implies\sf 2n^2 - 14n - 120 = 0\\\\\\:\implies\sf 2(n^2 - 7n  -  60) = 0\\\\\\:\implies\sf n^2 - 7n  - 60 = 0\\\\\\:\implies\sf n^2 - (12 - 5)n - 60 = 0\\\\\\:\implies\sf n^2 - 12n + 5n - 60 = 0\\\\\\:\implies\sf n(n - 12) + 5(n - 12) = 0\\\\\\:\implies\sf (n - 12)(n + 5) = 0\\\\\\:\implies \green{\sf n = 12 }\quad \sf or \quad \red{ n = -\: 5}

\rule{100}{0.9}

\underline{\bigstar\:\sf{Sides\:of\: Triangle :}}

\bullet\:\:\textsf{Base = n = \textbf{12 cm}}\\\bullet\:\:\textsf{Altitude = (n - 5) = \textbf{5 cm}}

\therefore\:\underline{\textsf{Hence, Base \& Altitude are \textbf{12 cm \& 5 cm} respectively.}}

\rule{200}{2}

⠀⠀⠀⠀Shortcut Trick

\begin{tabular}{|c |c | c|}\cline{1-3}p/b & b/p & h \\\cline{1-3}3 & 4 & 5 \\5 & 12 &13\\8 & 15&17 \\7 & 24&25\\\cline{1-3}\end{tabular}

This is Pythagorean Triplet, & If there's a Right Angled Triangle. Then it will must follow Pythagorean Triplet.

In this Question Hypotenuse is Given as 13, then it will must follow 5, 12, 13.

Now we will Check it.

• Hypotenuse = 13 cm

• Altitude = (Base – 7)

As Base is larger number ATQ, then we will take 12 for it & then.

⇢ Altitude = (Base – 7)

⇢ Altitude = (12 – 7)

Altitude = 5

So, we can see this is following the first Pythagorean Triplet.

\bullet\:\:\textsf{Hypotenuse = \textbf{13 cm}}\\\bullet\:\:\textsf{Base = \textbf{12 cm}}\\\bullet\:\:\textsf{Altitude = \textbf{5 cm}}

Similar questions