Math, asked by ajarindam, 1 year ago

the altitude of a right triangle is 7cm less than its base. if the hypotenuse is 13 CM, find the other two side.

Answers

Answered by Anonymous
12

\huge\underline\mathbb{SOLUTION:-}

\mathsf {Let,\:base\:of\:triangle\:be\:x}

\mathsf {And, \:Let\:altitude\:of\:triangle\:be\:(x - 7)\:Cm}

\mathsf {It\:is\:given\:that\:hypotenuse\:of\:triangle\:is\:13\:Cm}

\underline \texttt {According\:to\:Pythagoras\:Theorem,}

\mathsf {13^2 = x^2 + (x - 7)^2 \: \:(a + b)^2 = a^2 + b^2 + 2ab}

\implies \mathsf {169 = x^2 + x^2 + 49 - 14x}

\implies \mathsf {169 = 2x^2 - 14x + 49}

\implies \mathsf {2x^2 - 14x - 120 = 0}

\underline \texttt {Dividing\:equation\:by\:2}

\implies \mathsf {x^2 - 7x - 60 = 0}

\implies \mathsf {x^2 - 12x + 5x - 60 = 0}

\implies \mathsf {X(x - 12) + 5(x -12) = 0}

\implies \mathsf {(x - 12) (x + 5}

\implies \mathsf {x = -5,\:12}

\mathsf {We\:discard\:x = -5\:because\:length\:of\:side}

\mathsf {of\:triangle\:cannot\:be\:negative.}

\therefore \mathsf \blue {Base\:of\:triangle = 12\:Cm}

\mathsf \blue {Altitude\:of\:triangle = (x - 7) = 12 - 7 = 5\:Cm}

Answered by BlessedMess
3

Given,

  • Altitude of right triangle is 7 cm less than its base.
  • Hypotenuse is 13 cm.

To find,

  • The other two sides.

Solution,

  • Let x be the base of the triangle
  • Then altitude will be (x-7)

We know that,

\sf{Base^2+Altitude^2=Hypotenuse^2}

So, by pythagoras theorem,

 {x}^{2}   +  ( {x - 7)}^{2}  =  {13}^{2}  \\ \\  ⟹2 {x}^{2} -  14x + 49  = 169 \\ \\   ⟹2 {x}^{2}  - 14x + 49 - 169 = 0  \\ \\  ⟹2 {x}^{2}  - 14x - 120 = 0 \\ \\  ⟹2( {x}^{2}  - 7x - 60) = 0 \\ \\  ⟹ {x}^{2}  - 7x - 60 =  \frac{0}{2}  \\  \\⟹ {x }^{2}  - 7x - 60 = 0 \\ \\  ⟹  {x}^{2}  - 12x + 5x - 60 = 0 \\ \\  ⟹x(x - 12) + 5(x - 12) = 0 \\  \\ ⟹(x - 12)(x + 5) = 0

So, x = 12 or x = -5

Since,the side of a triangle cannot be negative,so the base of the triangle is 12 cm.

And the altitude will be (12-7) = 5 cm

Similar questions