the altitude of a right triangle is 7cm less than its base. if the hypotenus is 13 cm the other two sides of triangle are equal to:
Answers
Answer:
12cm , 5 cm
Step-by-step explanation:
Let the base of the triangle be x, thus the altitude should x - 7.
Given, hypotenuse = 13
using Pythagoras theorem,
⇒ x² + (x - 7)² = 13²
⇒ x² + x² + 49 - 14x = 169
⇒ 2x² - 14x + 49 - 169 = 0
⇒ 2x² - 14x - 120 = 0
⇒ x² - 7x - 60 = 0
⇒ x² - 12x + 5x - 60 = 0
⇒ x(x - 12) - 5(x - 12) = 0
⇒ (x - 12)(x + 5) = 0
x can't be -ve, so x = 12.
Hence,
Base = x = 12 cm
Altitude = x - 7 = 12 - 7 = 5 cm
Given :-
The altitude of a right triangle is 7cm less than its base. if the hypotenus is 13 cm
To Find :-
Other side
Solution :-
Let the altitude be a and base be b
a = b - 7 (1)
c² = a² + b²
(13)² = a² + b²
169 = (b - 7)² + b²
Apply identity ⇒ (a - b)² = a² - 2ab + b²
169 = (b)² - 2(b)(7) + (7)² + b²
169 = b² - 14b + 49 + b²
169 - 49 = b² - 14b + b²
120 = 2b² - 14b
120/2 = 2b² - 14b/2
60 = b² - 14b
0 = b² - 7b - 60
0 = b² - (12b - 5b) - 60
0 = b² - 12b + 5b - 60
0 = b(b - 12) + 5(b - 12)
0 = (b + 5)(b - 12)
b + 5 = 0
b = -5
Or,
b - 12 = 0
b = 12
Since, Length can not be negative b = 12
Using 1
a = b - 7
a = 12 - 7
a = 5