Math, asked by mitalshah185, 7 months ago

The altitude of an equilateral triangle having 3√3 cm find area​

Answers

Answered by Aryan0123
5

Given:

  • Altitude = 33 cm

To find:

  • Area of triangle = ?

Method:

Let a be the side of an equilateral triangle

 \sf{Height \: of \: Equilateral \: triangle =  \dfrac{ \sqrt{3} }{2} a} \\  \implies \sf height =  \dfrac{ \sqrt{3} }{2} a \\  \implies \sf{3 \sqrt{3}  =   \frac{ \sqrt{3} }{2} a} \\  \\  \sf \: cancelling \sqrt{3} \:  on \:  both \: sides\\ \implies \sf{3 =  \frac{1}{2} a} \\  \implies \sf{ \frac{a}{2}  = 3} \\ \implies \boxed{ \sf{a = 6}}

Side = 6 cm

Height = 33 cm

 \sf{area \: of \: triangle =  \dfrac{1}{2}  \times base \times height } \\  \implies \sf{area =  \frac{1}{2} \times6 \times 3 \sqrt{3 }   } \\  \\  \implies \sf{area =3 \times 3 \sqrt{3}  } \\  \implies \boxed{ \sf{area = 9 \sqrt{3} \:  {cm}^{2}  }}

Area = 9√3 cm²

Similar questions