Physics, asked by sudeepagoud, 1 year ago


The amplitude and time period of a particle
of mass 0.1 kg executing simple harmonic
motion are 1m and 6.28 s, respectively.
Then its angular frequency and
acceleration at a displacement of 0.5 m are
respectively​

Answers

Answered by Shreya091
96

{\huge{\bold{\underline{\mathfrak{\orange{QueSTion}}}}}}

The amplitude and time period of a particle of mass 0.1kg executing simple harmonic motion are 1m and 6.28seconds, respectively. Then it's angular frequency at a displacement of 0.5 respectively?

{\huge{\bold{\underline{\mathfrak{\orange{AnSwEr}}}}}}

\large{\sf{\underline{\underline{SoMe \: ImporTanT :-}}}}

\large\green{\boxed{\sf \omega = \frac{2π}{T} }}

Here,

\large\sf\omega =Angular frequency

\large\sf\ π = 3.14 [approx]

\large\sf\ T = time period

\large\green{\boxed{\sf  a = -{\omega}^{2}x }}

Here,

\large\sf\omega = Angular frequency

\large\sf\ a = Acceleration

\large\sf\ x = displacement

\large{\sf{\underline{\underline{GiVen:-}}}}

Amplitude = 1m

Displacement = 0.5m

Time period = 6.28s

\large{\sf{\underline{\underline{To \: Find }}}}

Angular frequency (\large\sf\omega )

Acceleration (\large\sf\ a )

\large{\sf{\underline{\underline{SoluTion:-}}}}

Now, constitute the given values in formula of Angular frequency

\large\sf\omega = \frac{2π}{T}

\leadsto \large\sf\omega = \frac{2 \times\ 3.14}{6.28}

\leadsto\large\sf\omega = \frac{6.28}{6.28}

\red\leadsto\large\bf\red{\omega = 1rad}

Hence,

\large\sf\ a = -{\omega^2}x

\leadsto \large\sf\ a =-(1^2) \times\ 0.5

\red\leadsto \large\bf\red{a = -0.5m/s^2}

Similar questions