Math, asked by dhishkiaun, 9 days ago

the amplitude of 1-cos theta -i sin theta is

Answers

Answered by senboni123456
1

Answer:

Step-by-step explanation:

We have,

\tt{z=1-cos(\theta)-i\,sin(\theta)}

\tt{\implies\,|z|=\sqrt{\big(1-cos(\theta)\big)^2+sin^2(\theta)}}

\tt{\implies\,|z|=\sqrt{1+cos^2(\theta)-2\,cos(\theta)+sin^2(\theta)}}

\tt{\implies\,|z|=\sqrt{1+cos^2(\theta)+sin^2(\theta)-2\,cos(\theta)}}

\tt{\implies\,|z|=\sqrt{1+1-2\,cos(\theta)}}

\tt{\implies\,|z|=\sqrt{2-2\,cos(\theta)}}

\tt{\implies\,|z|=\sqrt{2\big(1-\,cos(\theta)\big)}}

\tt{\implies\,|z|=\sqrt{2\left(2\,sin^2\left(\dfrac{\theta}{2}\right)\right)}}

\tt{\implies\,|z|=\sqrt{4\,sin^2\left(\dfrac{\theta}{2}\right)\right)}}

\tt{\implies\,|z|=2\,sin\left(\dfrac{\theta}{2}\right)\right)}

Similar questions