Math, asked by ganeshgayen1998, 2 months ago

The analytic function whose real part is e^x cos y is *

Answers

Answered by ashwani123as
11

Answer:

the analystic function whose real part is e^x cos y is harmonic

Answered by mithun890
3
  • Let

           [y+ (e^x)cos(y)] =u(x,y)

         Thenu_x = (e^x)cos(y) = u_xx.

         and u_y = 1 - (e^x)sin(y)

         and  u_yy = -(e^x)cos(y) == > u_xx + u_yy = 0  for all real x and y.

  • Hence the given function u(x,y) is harmonic.
  • Suppose that its conjugate harmonic is v(x,y).
  • Then by Cauchy-Riemann conditions

                v_y = u_x = (e^x)cos(y)……(1),

                v_x = -u_y = (e^x)sin(y) -1……..(2).

  • Integrating (1) with respect to y gives

           v(x,y) = (e^x)sin(y) + g(x)…….(3),

  •  and integrating (2) with respect to x gives thatv(x,y) = v(x,y) = (e^x)sin(y) -x +h(y)……..(4).
  • Equating (3) and (4) we get

          g(x)=(-x)  and h(y) =0 .

  • Hence v(x,y) = (e^x)sin(y)-x.

  • Thereforef(z)=f(x+i.y) = u(x,y)+i.v(x,y)

                                             = [y+(e^x)cos(y)] +i.[(e^x)sin(y) - x]

                                             =(e^x)[cos(y) +i.sin(y)] + (y-i.x)

                                             = (e^x)e^(i.y) -i(x+i.y)

                                             = e^(x+i.y) - i.z

                                             = e^z - i.z.

Similar questions