Math, asked by mohdayaan53470, 7 months ago

the angel of a quadrilateral are in the ratio 3.4.5.6 find the angle​

Answers

Answered by atulsir31
2

Answer:

ratio=3:4:5:6

3x+4x +5x+6x =360

18x =360.

x=360/18 = 20.

3x = 3×20

= 60 .

4x= 4× 20

=80.

5x= 5×20

=100

6x= 6×20 .

120

Answered by Glorious31
6

Step-by-step explanation:

 \sf ratio \: given

  \sf\bullet \: 3

 \sf \bullet \: 4

 \sf \bullet \: 5

 \sf \bullet \: 6

 \\

 \sf \: now \: lets \: take \: a \: common \: factor \: (x)

 \\

 \sf  \bullet\: 3 \times x = 3x \\  \\  \sf  \bullet\:4 \times x = 4x \\  \\  \sf  \bullet\:5 \times x = 5x \\  \\  \sf  \bullet\:6 \times x = 6x

 \\

 \sf \: We \: know \: that \: the \: total \: measure \: of  \\  \sf \: any \: quadrilateral \: is \: 360

 \sf \: We \: will \: add \: up \: all \: ratios

 \\

 \sf \: 3x + 4x + 5x + 6x = 360 \\  \\  \sf \: 7x + 11x = 360 \\  \\  \sf \: 18x = 360 \\  \\  \sf \: x \:  =  \dfrac{360}{18}  \\  \\ \sf x = 20

 \\

 \sf \: Now \: we \: can \: find \: the \: angles \colon

 \sf \: 3 \times 20 = 60 \degree \\  \\  \sf \: 4 \times 20 = 80 \degree \\  \\ \sf \: 5 \times 20 = 100 \degree \\  \\ \sf \: 6 \times 20 = 120 \degree

 \\

 \sf \: We \: can \: verify \: it \: by \: adding \colon \\  \\  \sf \: 60 + 80 + 100 + 120 = 360 \degree \\  \\  \sf \: 140 + 220 = 360 \degree \\  \\  \sf \: 360 = 360 \degree \\  \\  \sf \: LHS = RHS

Similar questions