Math, asked by red050609, 2 days ago

The angels of quadrilateral are in A.P. and the greatest angel is double the least, find angels of the quadrilateral in radian?

a-d,a-2d,a+d,a+2d​

Answers

Answered by chandan454380
0

Answer:

Angles in radian \frac{5\pi}{16},\frac{7\pi}{16},\frac{9\pi}{16} and \frac{11\pi}{16}

Step-by-step explanation:

Let a-3d,a-d,a+d,a+3d are the angles of quadrilateral in A.P.

Given, greatest angle is twice of least angle

 \Rightarrow a+3d=2(a-3d)\Rightarrow a+3d=2a-6d\Rightarrow a=8d\Rightarrow d=\frac{a}{8}

But we know that, sum of all the interior angles of quadrilateral is 2\pi

\Rightarrow a-3d+a-d+a+d+a+3d=2\pi

\Rightarrow 4a=2\pi \Rightarrow a=\frac{\pi}{2}\therefore d=\frac{a}{8}=\frac{\pi}{16}

Thus angles are,

a-3d=\frac{\pi}{2}-\frac{3\pi}{16}=\frac{5\pi}{16}, a-d=\frac{\pi}{2}-\frac{\pi}{16}=\frac{7\pi}{16}

a+d=\frac{\pi}{2}+\frac{\pi}{16}=\frac{9\pi}{16}, a+3d=\frac{\pi}{2}+\frac{3\pi}{16}=\frac{11\pi}{16}

Similar questions