Math, asked by ashacharya288, 2 months ago

the angels of the triangle are in A.P. if the smallest angel is 36°,then the measure of the other angels are​

Answers

Answered by mathdude500
1

\large\underline{\bold{Given \:Question - }}

The angles of the triangle are in A.P. If the smallest angle is 36°, then the measure of the other angless are ___

\large\underline{\sf{Solution-}}

  • Since, angles of a triangle are in A. P.

So,

\begin{gathered}\begin{gathered}\bf \:Let \:  the \: angles \: be  - \begin{cases} &\sf{(a - d) \degree \: } \\ &\sf{a\degree \:} \\ &\sf{(a + d)\degree \:} \end{cases}\end{gathered}\end{gathered}

We know,

  • Sum of angles of a triangle is 180°.

Therefore,

\rm :\longmapsto\:a -  \cancel d \:  +  \: a \:  + a -  \cancel d = 180

\rm :\longmapsto\:3a = 180

\bf\implies \:a \:  =  \: 60\degree \: -  - (1)

Now,

  • Smallest angle of a triangle is 36°.

\rm :\implies\:a - d = 36

\rm :\longmapsto\:60 - d = 36 \:  \: \:  \:  \:  \:  \:  \:   \{using \: (1) \:  \}

\rm :\longmapsto\:d = 60 - 36

\bf\implies \:d \:  =  \: 24\degree \:

\begin{gathered}\begin{gathered}\bf \:Hence,  \:  the \: angles \: are - \begin{cases} &\sf{a - d = 60 - 24 = 36 \degree \: } \\ &\sf{a = 60\degree \:} \\ &\sf{a + d= 60 + 24 = 84\degree \:} \end{cases}\end{gathered}\end{gathered}

Additional Information :-

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\bigstar\:\:{\underline{{\boxed{\bf{{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

↝Sₙ (Sum of first n terms) of an arithmetic sequence is,

\begin{gathered}\bigstar\:\:{\underline{{\boxed{\bf{{S_n\:= \: \dfrac{n}{2} \: (2\: a\:+\:(n\:-\:1)\:d)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of first n terms.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Similar questions