Physics, asked by jjchaddarwala6805, 9 months ago

The angle between A=5i-5j and B= 10i-10j

Answers

Answered by AtharvLohakare
0

Answer:

45° draw the graph and point place on it measure the angle made by line joining the two points with x axis

Answered by TheValkyrie
4

Answer:

\bigstar{\bold{Angle\:between\:the\:vectors=0^{o}}}

Explanation:

\Large{\underline{\underline{\bf{Given:}}}}

  • \vec{A}=5\hat{i}-5\hat{j}
  • \vec{B}=10\hat{i}-10\hat{j}

\Large{\underline{\underline{\bf{To\:find:}}}}

  • Angle between the vectors

\Large{\underline{\underline{\bf{Solution:}}}}

→ Angle between two vectors is given by the formula

  cos\theta=\dfrac{\vec{A}.\vec{B}}{|A||B|}

\vec{A}.\vec{B}=5\times10+-5\times-10

  \vec{A}.\vec{B}=100

|A|=\sqrt{5^{2} +5^{2} }

 |A|=\sqrt{50}

|B|=\sqrt{10^{2}+10^{2}  }

 |B|=\sqrt{200}

→ Substituting these datas in the formula we get

   cos\theta=\dfrac{100}{\sqrt{50}\times \sqrt{200}  }

  cos\theta=\dfrac{100}{\sqrt{50} \times2\sqrt{50} }

  cos\theta=\dfrac{50}{50} =1

  θ = 0°

\boxed{\bold{Angle\:between\:the\:vectors=0^{o}}}

\Large{\underline{\underline{\bf{Notes:}}}}

→ The angle between two vectors is given by

   cos\theta=\dfrac{\vec{A}.\vec{B}}{|A||B|}

Similar questions