Math, asked by bansodesarika90, 2 months ago

the angle between the line √3x-y-2=0and x-√3y+1=0is​

Answers

Answered by Anonymous
48

 \large{ \underline{ \underline{ \bigstar \:  \:  \:  \:  \:  \: { \pmb{ \sf{Conception \:  : }}}}}}

Angel b/w two lines is defined mathematically as,  \odot \:  \:  \:  \:  \sf \tan( \phi)  =  \tan( \pi -  \theta)  =  -  \tan( \theta)  =  -   \bigg(\frac{m_1 - m_2}{1 + m_1m_2}   \bigg)\\ [ \sf{where,  \:  \: m_1  \:  \: and \:  \:  m_2  \:  \: are  \:  \: the  \:  \: slopes \:  \:  of  \:  \: intercepted \:  \:  lines}]\\ \\ \\ \\ \large{ \underline{ \underline{ \bigstar \:  \:  \:  \:  \:  \: { \pmb{ \sf{Solution \:  : }}}}}}

changing given lines into slope-intercept form,  \\  \\  \begin{array}{c|c}  \dashrightarrow \sf x \sqrt{3} - y - 2 = 0 & \dashrightarrow \sf x - y \sqrt{3}   + 1 = 0 \\  \\  \dashrightarrow \sf \: y = x \sqrt{3}  - 2& \dashrightarrow \sf y =  \frac{1}{ \sqrt{3} }x +  \frac{1}{ \sqrt{3} }   \\  \\  \sf \therefore \:  \: slope  \:  \: is \:  \:  \sqrt{3} & \sf  \therefore \: slope \:  \: is \:  \:  \frac{1}{ \sqrt{3} } \\  \end{array} \\  \\ Now, substituting into mathematical formula \sf \dashrightarrow \tan( \theta)  =       \bigg(\frac{m_1 - m_2}{1 + m_1m_2}   \bigg)\\ \\  \sf \dashrightarrow \tan( \theta)  =       \bigg(\frac{ \sqrt{3}  -  \frac{1}{ \sqrt{3} } }{1 +  \sqrt{3}  \times \frac{1}{ \sqrt{3} }  }   \bigg)\\ \\  \sf \dashrightarrow \tan( \theta)  =       \bigg( \frac{ \cancel{2 }}{{ \cancel{2} \:   \sqrt{3} }  }   \bigg)\\ \\ \sf \dashrightarrow \tan( \theta)  =       \bigg( \frac{1}{ \sqrt{3} }  \bigg) \\  \\  \dashrightarrow  {\blue{{ \frak{\theta =   \bigg(\frac{\pi}{6} } \bigg)}\: \: \: \: \: \&\: \: \: \:\:\: \phi = \bigg(\pi-\frac{\pi}{6}\bigg) =\bigg(\frac{5\pi}{6}\bigg)}}\\

ʜᴇɴᴄᴇ, ᴀɴɢʟᴇs ʙ/ᴡ ᴛʜᴏsᴇ ᴛᴡᴏ ʟɪɴᴇs ᴡɪʟʟ ʙᴇ π/6 ᴀɴᴅ (π-π/6)= 5π/6

 \frak{\colorbox{aqua}{BriefReflexion}}

Attachments:
Similar questions