Math, asked by aruna12345, 6 months ago

The angle between the two altitudes of a parallelogram through the vertex of an obtuse angle of the parallelogram is 45°. Find the angles of the parallelogram.

Attachments:

Answers

Answered by Anonymous
14

\huge \red  \star  \:  \: \huge \sf \underline{ \blue{given: }}  \:  \: \huge \red \star \:

  • ABCD is parallelogram.

  • ∠EBF = 45°.

  • BE and BF are altitudes on DC and DA respectively.

  • ∠DEB = ∠BFA = 90°.

\huge \red  \star  \:  \: \huge \sf \underline{ \blue{to \: find : }}  \:  \: \huge \red \star \:

  • All angles of Parallelogram.

\huge \red  \star  \:  \: \huge \sf \underline{ \blue{solution: }}  \:  \: \huge \red \star \:

In quadrilateral DEBF,

sum of all angles = 360°.

∠DEB + ∠EBF + ∠BFD +∠D = 360°

➥ 90 + 45 + 90 + ∠D = 360°

➥ 225 + ∠D = 360°

➥ ∠D = 135°

▬▬▬▬▬▬▬▬▬

∵ ABCD is parallelogram,

  • Opposite angles are equal.

  • Adjecent angles are supplementary (sum is 180°)

∴ ∠D = ∠B = 135°

➥ ∠D + ∠x = 180°

➥ 135 + ∠x = 180°

➥ ∠x = 45°

➙ All angles are 135°,135°,45°,45°.

Answered by Anonymous
20

Given:-

\angle EBF = 45°

\angle BFD = 90°

\angle BED = 90°

Find:-

◕All angles of Paralleogram.

Diagram:-

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1,1)(1,1)(6,1)\qbezier(1,1)(1,1)(1.6,4)\qbezier(1.6,4)(1.6,4)(6.6,4)\qbezier(6,1)(6,1)(6.6,4)\qbezier(6,1)(1.2,2)(1.2,2)\qbezier(6,1)(5.5,4)(5.5,4)\qbezier(5.9,1.5)(5,1.9)(5.4,1.1) \qbezier(1.4,1)(1.6,1.4)(1.1,1.3)\qbezier(6,4)(5.9,3.2)(6.5,3.4) \qbezier(6,1)(1.2,2)(1.2,2) \qbezier(1.5,1.75)(1.2,1.8)(1.2,1.8)\qbezier(1.5,1.75)(1.6,2)(1.6,1.9)\put(4.7,1.4){$\bf 45^{\circ}$} \put(5.7,3.2){$\bf x^{\circ}$}\put(1.5,1.1){\bf x}\put(0.9,0.7){\bf A}\put(6,0.7){\bf B} \put(6.8,3.8){\bf C}\put(1.2,3.8){\bf D}\put(5.4,4.1){\bf E}\put(0.9,2){\bf F} \end{picture}

Solution:-

In BEFD

 \sf \implies \angle BED + \angle FBE + \angle EDF + \angle DFB =  360^ \circ  \bigg\lgroup Angle  \: Sum \:  Property\bigg\rgroup \\

 \green{\sf where}  \footnotesize{\begin{cases}  \pink{\sf \angle BED =  {90}^{ \circ}}   \\  \purple{\sf \angle FBE =  {45}^{ \circ}}  \\   \orange{\sf  \angle DFB =   {90}^{ \circ}} \end{cases}}

Substituting these values in the formula

 \sf \dashrightarrow \angle BED + \angle FBE + \angle EDF + \angle DFB = 360^ \circ \\  \\

 \sf \dashrightarrow  {90}^{ \circ}  + {45}^{ \circ}  + \angle EDF + {90}^{ \circ} = 360^ \circ \\  \\

 \sf \dashrightarrow  {225}^{ \circ}  + \angle EDF= 360^ \circ \\  \\

 \sf \dashrightarrow \angle EDF=  {135}^{ \circ} \\  \\

EDF = CBA = 135° Opp. angles of Paralleogram

CDA + DCB + DAB + CBA = 360°

Angle Sum Property

where,

  • ∠CDA = 135°
  • ∠CBA = 135°
  • ∠DAB = ∠DCB = x

Substituting these values in formula:-

➲∠CDA + ∠DCB + ∠DAB + ∠CBA = 360°

➲135° + x + x + 135° = 360°

➲270° + 2x = 360°

➲2x = 360° - 270°

➲2x = 90°

➲x = 90/2

➲x = 45°

├┬┴┬┴┬┴┤├┬┴┬┴┬┴┤├┬┴┬┴┬┴┤├┬┴┬┴┬┴┤├┬┴┬┴┬┴┤

Hence, Angles of Paralleogram are:-

  • CDA = 135°
  • CBA = 135°
  • DAB = 45°
  • DCB = 45°

Similar questions