Physics, asked by sanuvyas, 11 months ago

the angle between the two vectors to ICAP + 3 J cap + K cap and minus 3 ICAP + 6 k cap is​

Answers

Answered by BendingReality
3

Answer:

\displaystyle \sf \longrightarrow \theta= \cos^{-1}\left(\frac{-3}{275}\right) \\

Explanation:

Let say :

\displaystyle \vec{\text{A}} =\hat{i}+3\hat{j}+\hat{k} \\ \\

\displaystyle \vec{\text{B}} =-3\hat{i}+6\hat{k} \\ \\

We are asked to find angle between them :

Using dot product :

\displaystyle \sf A.B=AB\cos \theta \\ \\

\displaystyle \sf \longrightarrow \cos \theta=\frac{AB}{|A|.|B|}  \\ \\

Substituting values here we get :

\displaystyle \sf \longrightarrow \cos \theta=\frac{(\hat{i}+3\hat{j}+\hat{k}).(-3\hat{i}+6\hat{k} )}{\left|\left(\sqrt{1^2+3^2+1^2}\right)\right|.\left|\left(\sqrt{(-3)^2+6^2}\right)\right|} \\ \\

\displaystyle \sf \longrightarrow \cos \theta=\frac{(-9+6)}{\left|\left(\sqrt{11}\right)\right|.\left|\left(\sqrt{25}\right)\right|} \\ \\

\displaystyle \sf \longrightarrow \cos \theta=\frac{-3}{275} \\ \\

\displaystyle \sf \longrightarrow \theta= \cos^{-1}\left(\frac{-3}{275}\right) \\ \\

Hence we get required answer!

Similar questions