Political Science, asked by revanthsai1007, 7 months ago

The angle between the vectors (1, 0, −1, 3) and (1, √ 3, 3, −3) in    R^4  is aπ.  Find a.​

Answers

Answered by anshuman1052
1

Answer:

Hy mate here is your answer

Example 1. Find the angle between two vectors a = {3; 4} and b = {4; 3}.

Solution: calculate dot product of vectors:

a·b = 3 · 4 + 4 · 3 = 12 + 12 = 24.

Calculate vectors magnitude:

|a| = √32 + 42 = √9 + 16 = √25 = 5

|b| = √42 + 32 = √16 + 9 = √25 = 5

Calculate the angle between vectors:

cos α = a · b = 24 = 24 = 0.96|a| · |b|5 · 525

Example 2. Find the angle between two vectors a = {7; 1} and b = {5; 5}.

Solution: calculate dot product of vectors:

a·b = 5 · 7 + 1 · 5 = 35 + 5 = 40.

Calculate vectors magnitude:

|a| = √72 + 12 = √49 + 1 = √50 = 5√2

|b| = √52 + 52 = √25 + 25 = √50 = 5√2

Calculate the angle between vectors:

cos α = a · b = 40 = 40 = 4 = 0.8|a| · |b|5√2 · 5√2505

Examples of spatial tasks

Example 3. Find the angle between two vectors a = {3; 4; 0} and b = {4; 4; 2}.

Solution: calculate dot product of vectors:

a·b = 3 · 4 + 4 · 4 + 0 · 2 = 12 + 16 + 0 = 28.

Calculate vectors magnitude:

|a| = √32 + 42 + 02 = √9 + 16 = √25 = 5

|b| = √42 + 42 + 22 = √16 + 16 + 4 = √36 = 6

Calculate the angle between vectors:

cos α = a · b = 28 = 14|a| · |b|5 · 615

Example 4. Find the angle between two vectors a = {1; 0; 3} and b = {5; 5; 0}.

Solution: calculate dot product of vectors:

a·b = 1 · 5 + 0 · 5 + 3 · 0 = 5.

Calculate vectors magnitude:

|a| = √12 + 02 + 32 = √1 + 9 = √10

|b| = √52 + 52 + 02 = √25 + 25 = √50 = 5√2

Calculate the angle between vectors:

cos α = a · b = 5 = 1 = √5 = 0.1√5|a| · |b|√10 · 5√22√510

If my answer is helpful to you please mark me as a brainiest

Similar questions