Math, asked by vaibhav1673, 1 year ago

The angle between the vectors P = 3i+j+2k and Q=i-2i+3k is ​

Answers

Answered by TheOxford
4
\sf{ \overrightarrow{P} = 3 \hat{i} + \hat{j} + 2 \hat{k}}

\sf{\overrightarrow{Q} = \hat{i} - 2 \hat{j} + 3 \hat{k}}




<b>Step I :</b> <u>Find the magnitude of both the vectors.</u>

|\sf{\overrightarrow{P}}| \sf{= {\sqrt{(3)^2 + (1)^2 + (2)^2}} }

\sf{P = {\sqrt{9 + 1 + 4}}}

\sf{P = {\sqrt{14}}}

|\sf{\overrightarrow{Q}}| \sf{= {\sqrt{(1)^2 + (- 2)^2 + (3)^2}} }

\sf{Q = {\sqrt{1 + 4 + 9}}}

\sf{Q = {\sqrt{14}}}




<b>Step II :</b> <u>Determine the dot product of both vectors.</u>

\sf{\overrightarrow{P} . \overrightarrow{Q} = (3)(1) + (1)(- 2) + (2)(3)}

= 3 - 2 + 6

= 7




<b>Step III :</b> <u>Determine the angle</u>

As we know that,

\sf{\overrightarrow{P} . \overrightarrow{Q} = PQ cos \theta}

\succ 7 = (√14)(√14) cos θ

\succ 7 = 14 cos θ

\succ cos θ = 1 / 2

\succ cos θ = cos 60°

On comparing both sides, we get

θ = 60°




Hence, <u>the angle between two given vectors is</u> <I><u><b> 60°.</I></b></u>
Similar questions