Math, asked by Vickfury, 5 months ago

The angle between two altitudes of a parallelogram from the vertex of an obtuse angle of the parallelogram is 45º. Find the remaining angles of the parallelogram.

plz fast ​

Answers

Answered by shivasingh12372
0

Step-by-step explanation:

-

□ABCD is a parallelogram.

∠B & ∠D are obtuse.

BM & DN are altitudes from B & D on AD & AB, respectively, intersecting at O.

∠DOM=BON ...(vertically opposite angles=60

o

)

To find out-

The angles of the parallelogram ABCD.

Solution-

∠DOM+∠NOM=180

o

...(linear pair)

⟹60

o

+∠NOM=180

o

⟹∠NOM=120

o

.........(i)

Now, ∠AMO=∠DNO=90

O

...(both are perpendiculares on AD & AB, respectively.)$$

∴ In the quadrilateral AMON,

∠AMO+∠DNO=180

O

∴∠NOM+∠MAN=360

o

−180

O

=180

o

(sum of the angles of a quadrilateral =360

o

)

⟹∠MAN=180

O

−120

o

...(from i )

i.e ∠A=60

o

∴∠A=∠C=60

o

....(opposite angles of a paralleogram)

∴∠D+∠B=360

o

−120

o

=240

o

∴∠D=∠B=

2

240

o

=120

o

...(opposite angles of a paralleogram)

Ans- ∠A=∠C=60

o

,∠D=∠B=120

o

solution

Similar questions