Math, asked by adambhat1631, 1 year ago

The angle between vectors a=3i+4j+5k and b=6i+8j+10k

Answers

Answered by rohitkumargupta
57

HELLO DEAR,



let the angle between two vector is \Theta



GIVEN:-


\bold{\vec{A} = 3i + 4j + 5k}



and,



\bold{\vec{B} = 6i + 8j + 10k}



now,



so, \bold{\vec{A}.\vec{B}} = (3i + 4j + 5k).(6i + 8j + 10k)



\bold{\Rightarrow \vec{A}.\vec{B}} = (3.6 + 4.8 + 5.10)



\bold{\Rightarrow \vec{A}.\vec{B}} = (18 + 32 + 50)



\bold{\Rightarrow \vec{A}.\vec{B}} = 100



and,



magnitude of \bold{|\vec{A}| = \sqrt{3^2 + 4^2 + 5^2} = \sqrt{50}}



magnitude of \bold{|\vec{B}| = \sqrt{6^2 + 8^2 + 10^2} = \sqrt{200}}



we know:-


\sf{cos\Theta = \frac{\vec{A}.\vec{B}}{A.B}}



\bold{\Rightarrow cos\Theta = \frac{100}{\sqrt{50} \times \sqrt{200}}}



\bold{\Rightarrow cos\Theta = \frac{100}{\sqrt{10000}}}



\bold{\Rightarrow cos\Theta = \frac{100}{100}}



\bold{\Rightarrow cos\Theta = 1}



\bold{\Rightarrow cos\Theta = cos0\degree}



\bold{\Rightarrow \Theta = 0\degree}



I HOPE ITS HELP YOU DEAR,


THANKS

Similar questions