Math, asked by ashish85059103, 11 months ago

the angle of a quadrilateral are(2 X + 3)°,(x+7)°,(3x-5)°,(2x+11)°. find the measure of each angle of the quadrilateral.​

Answers

Answered by ItzMysticalBoy
2

Answer:

Sum of all angles of quadrilateral = 360°

 \:  \:  \:  \:  \: (2x + 3) + (x + 7) +( 3x - 5)  \\  \:  \:  \:  \:  \:  \: +  (2x + 11) = 360 \\  =  > 2x + 3 + x + 7 + 3x - 5 +  \\  \:  \:  \:  \:  \:  \:  \:  \: 2x   +  11 = 360 \\  =  > 8x + 16 = 360 \\  =  > 8x =3 60 - 16 \\  =  > 8x = 344 \\  =  > x =  \frac{344}{8}  \\  =  > x = 43

First angle

 = (2 \times 43 + 3)°= 89°

Second angle

(43 + 7)° = 50°

Third angle

 = (3 \times 43 - 5)° = 124°

Fourth angle

(2 \times 43 + 11) ° = 97 °

Answered by Anonymous
5

\huge{\star}{\underline{\boxed{\red{\sf{Answer :}}}}}{\star}

Given :-

Angles of a quadrilateral are :-

• (2x + 3)°

• (x + 7)°

• (3x - 5)°

• (2x + 11)°

===========================

To Find :-

Sides of the quadrilateral

==========================

Solution :-

We know that,

Sum of all angles of quadrilateral = 360°

__________[Put Values]

(2x + 3)° + (x + 7)° + (3x - 5)° + (2x + 11)° = 360°

2x + 3 + x + 7 + 3x - 5 + 2x + 11 = 360

8x + 16 = 360

8x = 360 - 16

8x = 344

x = 344/8

x = 43°

__________________

Angles of a quadrilateral are :-

• (2x + 3)° = 2(43) + 3 = 89°

• (x + 7)° = 43 + 7 = 50°

• (3x - 5)° = 3(43) - 5 = 124°

• (2x + 11)° = 2(43) + 11 = 97°

\rule{400}{4}

\huge{\star}{\underline{\boxed{\blue{\sf{Verification}}}}}{\star}

Add all the angles and then put them equal to the 360.

A.T.Q

89 + 50 + 124 + 97 = 360

139 + 221 = 360

360° = 360°

R.H.S = L.H.S

\huge{\boxed{\green{\sf{Hence \: Verified}}}}

Similar questions