Math, asked by ramzakhan9505, 3 months ago

The angle of a quadrilateral are in the Ratio 2:4:6:7 find all the angle

Answers

Answered by nikkuanita07
3

Answer:

Hope it will help you

Step-by-step explanation:

2:4:5:7

Let x be the commom multiple

2x + 4x + 5x + 7x = 360:

Sum of angles in quadrilatetal is 360 degree

18x = 360

x= 20

Therefore, 2x = 2 × 20 = 40

4x = 4 × 20 = 80

5x = 5 × 20 = 100

7x = 7 × 20 = 140

Answered by BrainlyRish
4

Appropriate Question :

  • The angle of a quadrilateral are in the Ratio 2:4:5:7 . Find measure of all the angles of quadrilateral.

Answer :

  • ⠀⠀⠀⠀⠀\dag {\underline{ \mathrm { \: Measure \:of\:all\:four\:angles \:of\:Quadrilateral \:are\:40\degree, \:80\degree ,\:100\degree \:and\:140\degree \: }}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Given : Th angles of Quadrilateral is in ratio 2:4:6:7 .

Need To Find : Measures of all angles of Triangle.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's Consider measure of all four angles of quadrilateral be 2x , 4x ,5x , & 7x .

\frak{\underline { \dag As \: We \:Know \:that \:,}}\\

  • \underline {\boxed {\sf{ \star The \:sum\:of \:all\:angles \:of\:Quadrilateral \:is \:360\degree}}}\\

Or ,

  • \underline {\boxed {\sf{ \star \angle A + \angle B + \angle C + \angle D =\:360\degree}}}\\

Where ,

  • \angle A  , \angle B , \angle C \:and\: \angle D are the all four angles of Quadrilateral.

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

⠀⠀⠀⠀⠀⠀:\implies \tt{  2x + 4x + 5x + 7x =\:360\degree}\\

⠀⠀⠀⠀⠀⠀:\implies \tt{  6x + 5x + 7x =\:360\degree}\\

⠀⠀⠀⠀⠀⠀:\implies \tt{  11x + 7x =\:360\degree}\\

⠀⠀⠀⠀⠀⠀:\implies \tt{  18x =\:360\degree}\\

⠀⠀⠀⠀⠀⠀:\implies \tt{ x =\:\dfrac{\cancel {360}}{\cancel {18}}}\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  x = 20\:\degree}}}}\:\bf{\bigstar}\\

Therefore,

  • First Angle of Quadrilateral is 2x = 2 × 20 = 40⁰

  • Second angle of Quadrilateral is 4x = 4 × 20 = 80

  • Third angle of Quadrilateral is 5x = 5 × 20 = 100

  • Fourth Angle of Quadrilateral is 7x = 7 × 20 = 140

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm { Hence,\: Measure \:of\:all\:four\:angles \:of\:Quadrilateral \:are\:40\degree, \:80\degree ,\:100\degree \:and\:140\degree \: }}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star Verification \::}}}\mid}}}\\\\

\frak{\underline { \dag As \: We \:Know \:that \:,}}\\

  • \underline {\boxed {\sf{ \star The \:sum\:of \:all\:angles \:of\:Quadrilateral \:is \:360\degree}}}\\

Or ,

  • \underline {\boxed {\sf{ \star \angle A + \angle B + \angle C + \angle D =\:360\degree}}}\\

Where ,

  • \angle A  , \angle B , \angle C \:and\: \angle D are the all four angles of Quadrilateral.

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

⠀⠀⠀⠀⠀⠀:\implies \tt{  100\degree + 80\degree + 40\degree+ 140\degree =\:360\degree}\\

⠀⠀⠀⠀⠀⠀:\implies \tt{  1 80\degree + 180\degree =\:360\degree}\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  360\degree = 360\:\degree}}}}\:\bf{\bigstar}\\

⠀⠀⠀⠀⠀\therefore {\underline {\bf{ Hence, \:Verified \:}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions