Math, asked by coronavirus20212021, 3 months ago

the angle of a quadrilateral are x degrees, (x+15 degrees) (x+25 degrees) and (x+4) find the angles ​

Answers

Answered by TheMoonlìghtPhoenix
51

Answer:

Step-by-step explanation:

We need to know the following things before we answer this question.

The sum of all angles of a quadrilateral is equal to 360°, whatever the consequences be.

So, we are given the following :-

  • Angles are x
  • x+15
  • x+25
  • x+4

Now, refer to the attachment and find something. I have mentioned a trick there.

Applying the trick, we can solve it further.

\implies x+x+15+x+25+x+4 = 360

\implies 4x+44 = 360

\implies 4x = 360 - 44

\implies 4x = 316°

\implies x = 79°

Now, we can do the following - substitution of x in the values.

\longrightarrow x = 79°

\longrightarrow x + 15 = 94°

\longrightarrow x + 25 = 104°

\longrightarrow x+ 79 = 83°

Hence, the answers.

Attachments:
Answered by BrainlyRish
43

Given : Angles of a quadrilateral are x⁰ , (x+15)⁰ , (x+25)⁰ and (x+4)⁰ .

Exigency To Find : The Angles of Quadrilateral.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's Consider  \angle  A , \: \angle B \:\angle C \:\& \:\angle D \: be the all four angles of Quadrilateral.

\dag\:\:\it{ As,\:We\:know\:that\::}\\ \bf Angle \: Sum \:Property \:of \: Quadrilateral  \:: \:\\

⠀⠀⠀⠀⠀━━━ The Sum total of all angles of Quadrilateral is 360⁰ .

\qquad \dag\:\:\bigg\lgroup \sf{ \angle A + \angle B + \angle C + \angle D = 360^\circ}\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here , \angle  A , \: \angle B \:\angle C \:\& \:\angle D \: are the four angles of Quadrilateral.

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad :\implies  \sf  \angle A + \angle B + \angle C + \angle D = 360^\circ \\

\qquad :\implies  \sf  x + ( x + 15 )  + ( x + 25 ) + ( x + 4)  = 360^\circ \\

\qquad :\implies  \sf  x + x + 15   +  x + 25  + x + 4  = 360^\circ \\

\qquad :\implies  \sf  x + x + x + x  +15    + 25  + 4  = 360^\circ \\

\qquad :\implies  \sf  4x +   15    + 25  + 4  = 360^\circ \\

\qquad :\implies  \sf  4x +   15    +  29  = 360^\circ \\

\qquad :\implies  \sf  4x +   44  = 360^\circ \\

\qquad :\implies  \sf  4x +   44  = 360 - 44 \\

\qquad :\implies  \sf  4x   = 316 \\

\qquad :\implies  \sf  x   =  \cancel {\dfrac{316}{4}}\\

\qquad \longmapsto \frak{\underline{\purple{\:x = 79 ^\circ }} }\bigstar \\

Therefore,

  • First Angle : x = 79
  • Second Angle : ( x + 15 ) = 79 + 15 = 94
  • Third angle : ( x + 25 ) = 79 + 25 = 104
  • Fourth Angle : ( x + 4 ) = 79 + 4 = 83

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \sf \:Four\:angles \:of\:Quadrilateral \:are\:\bf  79 ^\circ , \: 94^\circ ,\:104^\circ  \:\:\& \:\:83 ^\circ \: \sf , respectively \:\:.}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Attachments:
Similar questions