Math, asked by aman113114kumar868, 9 months ago

the angle of a triangle are in the ratio 2:4:3. the smallest angle of the triangle is?​

Answers

Answered by saloni0059
0

it's ur answer

hope it is helpful to u

........

........

.........

please mark as brainlist

Attachments:
Answered by MysticalStar07
13

Given that :-

\sf \pink {The\: ratio\: of\: angles \:of\: a \:triangle\: is\: 2:4:3.}

\sf \green {Let}

\sf \purple{The \:angles \:of\: the\: triangle\: be \:∠ A , ∠ B \:and \:∠ C}

\sf \orange \therefore \red{ ∠ A = 2x,∠ B = 4x \:and \:∠ C = 3x} 

\sf \blue {In \:∠ ABC , ∠ A + ∠ B + ∠ C = 180°}

\sf \blue \therefore \green{Sum \:of\: angles \:of\: a \:triangle\: is \:180°} 

\sf \purple \therefore \pink{ 2x+4x+3x=180°}

\sf \green \implies \blue {9x=180°}

\sf \red \implies \orange {x=\cancel\frac{180}{9}}

\sf \pink \implies \purple{20°}

\sf \blue \therefore\green{∠ A = 2x}\\ \sf =2×20°\\ \sf =40°

\sf \orange \implies \red {∠ B = 4x}\\ \sf =4×20°\\ \sf=80°

\sf \purple \implies \pink {∠ C = 3x}\\ \sf =3×20°\\ \sf=60°

\sf \blue {Hence,}

\sf \green {The \:smallest \:angles\: of\: a \:triangle \:is \:40°}

Similar questions