English, asked by itzcinderella95, 9 months ago

The angle of depration of two consecutive kilometers stone on the reason right and left of an aroplane are 60°and 45° respectively as observed from the aeroplane. find the height of aeroplane . ​

Answers

Answered by ashauthiras
7

Answer:

h = 634 m

Let h be height of the aeroplane.

Let x1 and x2 be horizontal distance of aeroplane from two kilometer stones.

x1 = h/tanθ1

x1 = h/tan60°

x1 = h/1.732 ...(1)

x2 = h/tanθ2

x2 = h/tan45°

x2 = h/1 ...(2)

Total distance 2 consecutive kilometers is 1 km = 1000.

x1 + x2 = 1000

h/1.732 + h = 1000

1000

0.5773h + h = 1000

1.5773h = 1000

h = 1000 / 1.5773

h = 634 m

Hence, height of aeroplane is 634 m.

Answered by Anonymous
53

\boxed{\underline{{\boxed{\textbf{AnsWєг}}}}}

let a be the aeroplane and AD is its height

Again, let B and C be to constitutive kilometre stone on the road on the left and right of plan A and angle of depression A and B plan a are 60 and 45 respectively

Then,

∠ABC = ∠ PBC = 45° [alternative angle ]

and ∠ACB = QAC = 60° [alternative angle]

Also, BC = 1KM

Let,

BD= x KM , Then

DC = BC - BD = (1 - x) KM

in right angled Δ ADB

→ \tan(45)   = \frac{P}{B}   =  \frac{AD}{BD}

→1 =  \frac{AD}{x}  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:[{\tan(45)  = 1}]

AD = x

and in right angled Δ ADC

→ \tan(60)  =  \frac{AD }{DC}  =   \sqrt{3}  =  \frac{ x }{1 - x}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  [:  \tan(60)  =  \sqrt{3} ]

  • → \sqrt{3}   -  \sqrt{3x}  = x
  • → \sqrt{3}  =  \sqrt{3x}  + x
  • →( \sqrt{3}  + 1)x =  \sqrt{3}
  • →x =  \frac{ \sqrt{3} }{ \sqrt{3 + 1} }
  • →  \frac{ \sqrt{3} }{ \sqrt{3 + 1} }  \times  \frac{ \sqrt{3 - 1} }{ \sqrt{3 - 1} }
  • → \frac{3 -  \sqrt{3} }{( \sqrt{3} ^{2}  ) - (1) ^{2} }
  • → \frac{3 -  \sqrt{3} }{2}
  • → \frac{3 - 1.732}{2}  = 0.634 \: km

Or,

  • →0.634 \times 1000 = 634 \: m

[ 1 KM = 1000 M ]

Final answer is 634 m.

Similar questions