the angle of depression from the top of a vertical tower to a point on the ground is found to be 60°and from a point 50m above the foot of the tower angle of depression to the same point to be 30° find the height of the tower
Answers
Answered by
2
tan60° = \frac{(h+10)}{AB} ( in ∆
ABC)
AB
(h+10)
AB = \frac{(h+10)}{\sqrt{3}} ...(i)AB=
3
(h+10)
...(i)
In △DCO,
tan45° = \frac{h}{ab}
ab
h
∴ AB = h⋯(ii)
comparing eq.(i) and (ii), we get :
h = \frac{(h+10)}{\sqrt{3} }
3
(h+10)
∴ \sqrt{3}h
3
h = h+10
⇒ \sqrt{3}h
3
h - h = 10
h \sqrt{3-1} = 10
3−1
=10
∴ h = \frac{10}{\sqrt{3-1} }
3−1
10
Height of tower = h + 10
= \frac{10}{\sqrt{3-1} }
3−1
10
+10
= \frac{10+10\sqrt{3}-10}{\sqrt{3}-1 }
3
−1
10+10
3
−10
H = \frac{10 \sqrt{3}}{\sqrt{3} -1}
3
−1
10
3
m
Similar questions