Math, asked by Roko6904, 1 year ago

The angle of ekevation of a ladder leaning against a wall is 30 degree and foot of the ladder is 5m away from the wall .the length of the ladder is

Answers

Answered by Acrisius
0
A/Q
cos30°=5/length
=>root3/2 × 1/5=length
=>length=root3/10
Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Length\:of\:ladder=5.77\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about angle of elevation of a ladder to wall is 30° and the foot of the ladder 5 m away the wall.

• We have to Find the length of ladder.

  \green{\underline \bold{Given :}} \\   : \implies   \text{Distance \: between\: ladder \:and\:wall= 5\:m} \\ \\  :   \implies  \text{Angle\:of\:elevation\:of\:ladder\:to\:wall= 30\degree} \\  \\    \red{\underline \bold{To \: Find:}} \\  :  \implies  \text{Length\:of\: ladder = ?}

• Accroding to given question :

 \bold{In  \: \triangle \: ABC} \\   : \implies cos\:\theta=\frac{\text{Base}}{\text{hypotenuse}}\\  \\  :  \implies  cos\:30\degree  =  \frac{distance\:between\:wall\:and\:foot\:of\:ladder}{length\:of\:ladder}  \\  \\  :  \implies   \frac{\sqrt{3}}{2}=  \frac{5}{H}  \\  \\  :  \implies  \frac{\sqrt{3}H}{2}=5 \\ \\     : \implies H =  \frac{5\times 2}{\sqrt{3}}\\\\ :\implies H=\frac{10}{1.732}  \\  \\  \green{: \implies  \text{H =  5.77\: m}}

Attachments:
Similar questions