Math, asked by anitahajare99, 7 days ago

the angle of elevation of a cloud from a point 80m above a lake 30° and the angle of depression of the reflection of cloud in the lake is 60 find the height of the cloud​

Answers

Answered by mathdude500
18

Appropriate Question :-

The angle of elevation of a cloud from a point 80m above the lake level is 30° and the angle of depression of the reflection of cloud in the lake is 60°. Find the height of the cloud.

\large\underline{\sf{Solution-}}

Let assume that XY be the surface of lake level and let C be the point of observation which is at a height 25 m above the lake level.

Let further assume that D be the position of stationary cloud and E be its reflection in the lake.

Construction :- Join DE intersecting the surface XY at B. From C, Draw CF perpendicular to DE.

Let assume that height of the cloud, DB = h m

Now, as lake surface act as a plane mirror.

So, DB = BE = h m

Let further assume that CF = x m

Now, In right angle triangle DFC

\rm \: tan30\degree  = \dfrac{DF}{FC}  \\

\rm \:  \dfrac{1}{ \sqrt{3} }   = \dfrac{h - 80}{x}  \\

\rm\implies \:x \:  =  \:  \sqrt{3}(h - 80) -  -  - (1) \\

Now, In right angle triangle CFE

\rm \: tan60\degree  = \dfrac{FE}{FC}  \\

\rm \:  \sqrt{3}   = \dfrac{80 + h}{x}  \\

On substituting the value of x, from equation (1), we get

\rm \:  \sqrt{3}   = \dfrac{80 + h}{ \sqrt{3}(h - 80) }  \\

\rm \: 80 + h = 3(h - 80) \\

\rm \: 80 + h = 3h  - 240\\

\rm \: 3h -  h = 240 + 80 \\

\rm \: 2h= 320\\

\rm \: h= 160 \: m \: \\

Hence, the height of the cloud is 160 m

\rule{190pt}{2pt}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Similar questions