Math, asked by Thepinkrose, 1 month ago

The angle of elevation of a cloud from a point h metres above a lake is a and the angle of depression of its reflection in the lake is B. Prove that the height of the cloud is
\sf \: \frac{h(tan \: \alpha + tan \: \beta )}{tan \: \alpha -  tan \: \beta} \: meters \\

Answers

Answered by ShiningBlossom
3

Let AB be the surface of lake and let P be a point vertically above A such that AP = h meters.

\sf

[Image refers in the attachment.]

 \sf

Let C be the position of cloud and

let D be its reflection on the lake.

 \sf

Draw $\sf PQ \perp CD$

  \sf \angle \: QPC =  \alpha

 \sf \angle \: QPD =  \beta

BQ = AP = h meters

 \sf

Let CQ = x meters. Then,

BD = BC = (x + h) meters.

 \sf

From right ∆PQC, we have

 \sf \:  \frac{PQ}{CQ}  = cot \:  \alpha  \\

 \sf \implies \:  \frac{PQ}{x \: m}  = cot \:  \alpha  \\

 \sf \implies \: PQ = xcot \alpha  \: meters

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ-----(i)

From right ∆PQD, we have

 \sf \:  \frac{PQ}{QD}  = cot \:  \beta  \\

 \sf \implies  \frac{PQ}{(x + 2h) \: m}  = cot \:  \beta  \\

 \sf \implies \: PQ = (x + 2h)cot \beta  \: meters

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ-----(ii)

From (i) and (ii)

 \sf \: xcot \alpha  = (x + 2h)cot \beta

 \sf \implies \: x( \cot \alpha  - cot \beta ) = 2hcot \beta

 \sf \implies x( \frac{1}{tan \:  \alpha }  -  \frac{1}{tan \:  \beta } ) =  \frac{2h}{tan \:  \beta }  \\

\sf \implies x( \frac{tan \:  \beta  - tan \:  \alpha }{tan \:  \beta tan \:  \alpha} ) =  \frac{2h}{tan \:  \beta }  \\

\sf \implies x =  \frac{2htan \:  \alpha }{(tan \:  \beta  - tan \alpha )}  \\

$\therefore$ height of cloud from the surface of lake

  \sf \: =  (x + h) = \bigg\{\dfrac{2htan \:  \alpha }{(tan \:  \beta  - tan \:  \alpha )} + h \bigg\}  \: m\\

 \sf = \sf \bigg\{\dfrac{h(tan \:  \alpha  + tan \:  \beta )}{(tan \:  \beta  - tan \:  \alpha )} \bigg\}  \: meters \\

Attachments:
Similar questions