Math, asked by ayantika76, 11 months ago

the angle of elevation of a jet fighter some point p. on the ground is 60 degree.after 15 seconds , the angle of elevation changes to 30 degree .if the jet is flying at speed of 720 kilometre per hour .find the height at which the jet is flying .​

Answers

Answered by dollyandotra3
2

Step-by-step explanation:

The constant height at which the jet is flying is 2598 m

Step-by-step explanation:

Step 1:

Given data:

Let A be the point of observation on the ground and B and C be the two positions of the jet. Let BL=CM = h metres. Let AL = x metres.

Step 2:

Speed of the jet = 720 km/hr = = 200 m/sec

Time taken is 15 sec.

Distance BC = LM = 200   15 m = 3000 m

In  ALB,AL/bl

cot 60° = AL/BL

……………….. (i)

In  AMC,

Step 3:

cot 30° = AM/MC

=( AL+LM/MC )

x+3000 = h √3

x= h √3 -3000 ………………(ii)

Step 4:

From Equation (i) and Equation (ii)

√3 h-3000 =h/(√3)

3h-3000 √3 = h

2h= 5196

h=2598

Answered by Anonymous
0

 \textsf {\large{\underline { \underline {SOLUTION:-}}}}

⇰Let O be the point of observation on the ground OX.

⇰Let A and B be the two positions of the jet.

 \bf➠Then, \angle XOA=60⁰ \: and   \: \angle \: XOB=30⁰ \\  \\

  \bf ➠Draw \:   AL \perp \: OX \: and  \: BM \perp \: OX \\  \\

 \bf \:⇰ Let \: AL=BM=h \: meters. \\  \\

 \bf \: ⇰ \: Speed \: of \: Jet  = 720 \: km/hr\\

 \bf =  \huge( \small \: 720 \times  \frac{5}{18}  \huge) \small \: m / s\\

 \bf = 200 \: m/s

 \bf \:➥ Time  \: taken \: to \: cover \: the \: distance  \: AB=15  \: sec  \\  \\

 \bf➥ Distance  \: covered =(speed×time) \\  \\

 \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \bf = (200 \times 15)m = 3000m \\  \\

 \bf \therefore LM=AB=3000m \\  \\

{ \bf \: ⇰  \: Let \: OL} = x   \:  \bf m \\  \\

 \bf➥From  \: right  \: \triangle OLA, \: we \: have: \\

 \bf \frac{OL}{AL} =cot \: 60⁰= \frac{1}{ \sqrt{3} } \implies \frac{x}{h}  =  \frac{1}{ \sqrt{3} }  \\  \\

 \bf \implies \: x =  \frac{h}{ \sqrt{3} }  \:  \:  \:  \:  \:  \:  \: ....(1) \\  \\

 \bf \:➥ From  \: right  \: \triangle \: OMB,we \: have: \\

  \bf\frac{OM}{BM} =cot30⁰= \sqrt{3}  \\  \\

 \bf \implies \:  \frac{x + 3000}{h}  =  \sqrt{3}  \\  \\

 \bf[ \boxed{➯OM=OL+LM=OL+AB=(x+3000)m  \: and \: BM=h \: m]}

 \bf \implies \: x + 3000 =  \sqrt{3} h \\

 \bf \implies \: x = ( \sqrt{3} h - 3000) \:  \:  \:  \:  \:  \: ....(2) \\

⇰ Equating the value of x from (1) and (2),we get;

 \bf \:  \sqrt{3} h - 3000  =  \frac{h}{ \sqrt{3} }  \\  \\

 \implies \bf \: 3h  - 3000 \sqrt{3}  = h \\

 \bf \implies \: 2h = (3000 \times  \sqrt{3} ) = (3000 \times 1.762) \\

 \bf \implies \: h = (3000 \times 0.866) = 2598  \\  \\

 \bf \:➥ Hence \: ,the \: required  \: height \: is \: \boxed{ \boxed{ \bf2598 \: m.}} \\  \\

☆To View full answer drag your screen ⇰

Similar questions